Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:26:01.968Z Has data issue: false hasContentIssue false

MIS 3–2 PALEO-WINTER TEMPERATURE RECONSTRUCTIONS OBTAINED FROM STABLE WATER ISOTOPE RECORDS OF RADIOCARBON-DATED ICE WEDGES OF THE BATAGAY ICE COMPLEX (YANA UPLAND, EASTERN SIBERIA)

Published online by Cambridge University Press:  09 September 2022

Yurij Vasil’chuk
Affiliation:
Department of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia
Jessica Vasil’chuk
Affiliation:
Department of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia
Nadine Budantseva
Affiliation:
Department of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia
Alla Vasil’chuk*
Affiliation:
Department of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia
*
*Corresponding author. Email: alla-vasilch@yandex.ru

Abstract

The recently formed Batagay mega-thaw slump exposes permafrost deposits to a depth of up to 92 m below ground surface and provides insight into the climate record in the region of the most severe continental climate in the Northern Hemisphere. Radiocarbon and stable isotope data were obtained to verify the age of ice wedges in the Batagay yedoma (upper Ice Complex in the local cryostratigraphy), and to deduce paleoclimate information. A millennial-scale resolution paleotemperature record from radiocarbon-dated ice wedges spans Marine Isotope Stages (MIS) 3–2. The Batagay mean January air paleo-temperature during the 44.9–42 and 30.8–27.1 cal ka BP periods was stable cold has been reconstructed to about –51 ± 3°C each.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Ashastina, K, Schirrmeister, L, Fuchs, M, Kienast, F. 2017. Palaeoclimate characteristics in interior Siberia of MIS 6−2: first insights from the Batagay permafrost mega−thaw slump in the Yana Highlands. Climate of the Past 13:795818. doi: 10.5194/cp-13-795-2017.CrossRefGoogle Scholar
Ashastina, K, Kuzmina, S, Rudaya, N, Troeva, E, Schoch, WH, Römermann, C, Reinecke, J et al. 2018. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quaternary Science Reviews 196:3861. doi: 10.1016/j.quascirev.2018.07.032.CrossRefGoogle Scholar
Bronk Ramsey, C. 2021. OxCal version 4.4.4. Available at: https://c14.arch.ox.ac.uk (accessed 12 August 2021).Google Scholar
Budantseva, NA, Vasil’chuk, YK. 2021. Co-isotope (heavy hydrogen and oxygen) ratio in Late Pleistocene and Holocene ice wedges. Arctic and Antarctic. N 3. P. 19–42. doi: 10.7256/2453-8922.2021.3.36636. In Russian.CrossRefGoogle Scholar
Campbell-Heaton, K, Lacelle, D, Fisher, D. 2021. Ice wedges as winter temperature proxy: Principles, limitations and noise in the δ18O records (an example from high Arctic Canada). Quaternary Science Reviews 269:107135. ISSN 0277-3791. doi: 10.1016/j.quascirev.107135.CrossRefGoogle Scholar
Craig, H. 1961. Isotopic variations in meteoric waters. Science 133:17021703.CrossRefGoogle ScholarPubMed
Jongejans, LL, Mangelsdorf, K, Karger, C, Opel, T, Wetterich, S, Courtin, J, Meyer, H, Kizyakov, AI, Grosse, G, Shepelev, AG, Syromyatnikov, II, Fedorov, AN, Strauss, J. 2022. Assessing organic matter characteristics in ancient permafrost: a biogeochemical study at the Batagay Megaslump, East Siberia. The Cryosphere Discuss [preprint]. doi: 10.5194/tc-2022-12. In review.CrossRefGoogle Scholar
Meyer, H, Derevyagin, AY, Siegert, C, Hubberten, H-W. 2002. Paleoclimate studies on Bykovsky Peninsula, North Siberia – hydrogen and oxygen isotopes in ground ice. Polarforschung 70: 3751.Google Scholar
Murton, JB, Edwards, ME, Lozhkin, AV, Anderson, PM, Savvinov, GN, Bakulina, N, Bondarenko, OV, Cherepanova, MV, Danilov, PP, Boeskorov, V, et al. 2017. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quaternary Research 87:314330. doi: 10.1017/qua.2016.15.CrossRefGoogle Scholar
Murton, JB, Opel, T, Toms, P, Blinov, A, Fuchs, M, Wood, J, Gärtner, A, Merchel, S, Rugel, G, Savvinov, G, Wetterich, S. 2022. A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia. Quaternary Research 105: 122. doi: 10.1017/qua.2021.27.CrossRefGoogle Scholar
Opel, T, Meyer, H, Wetterich, S, Laepple, T, Murton, J. 2018. Ice wedges as archives of winter palaeoclimate: a review. Permafrost and Periglacial Processes 29:199209. doi: 10.1002/ppp.1980.CrossRefGoogle Scholar
Opel, T, Murton, JB, Wetterich, S, Meyer, H, Ashastina, K, Günther, F, Grotheer, H, Mollenhauer, G, Danilov, PP, Boeskorov, V, et al. 2019. Past climate and continentality inferred from ice wedges at Batagay megaslump in the Northern Hemisphere’s most continental region, Yana Highlands, interior Yakutia. Climate of the Past 15:14431461. doi: 10.5194/cp-15-1443-2019.CrossRefGoogle Scholar
Porter, TJ, Opel, T. 2020. Recent advances in paleoclimatological studies of Arctic wedge- and pore-ice stable-water isotope records. Permafrost and Periglacial Processes 31:429441. doi: 10.1002/ppp.2052.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, G, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal ka BP). Radiocarbon 62(4): 725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Schirrmeister, L, Grosse, G, Schwamborn, G, Andreev, AA, Meyer, H, Kunitsky, VV, Kuznetsova, TV, Dorozhkina, MV, Pavlova, EY, Bobrov, AA, Oezen, D. 2003. Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia): a multidisciplinary approach. Polar Geography 27(4):277319. doi: 10.1080/789610225.CrossRefGoogle Scholar
Schirrmeister, L, Grosse, G, Kunitsky, V, Magens, D, Meyer, H, Dereviagin, A, Kuznetsova, T, Andreev, A, Babiy, O, Kienast, F, Grigoriev, M. 2008. Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60 000 years (western Laptev Sea coast, Cape Mamontov Klyk). Polar Research 27:249272. doi: 10.1111/j.1751-8369.2008.00067.x.CrossRefGoogle Scholar
Vasil’chuk, YK. 1991. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources 17(6):640647.Google Scholar
Vasil’chuk, YK. 1992. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Lomonosov Moscow University Publications, Moscow. Vol. 1, 420 p., Vol. 2, 264 p. In Russian with English contents section.Google Scholar
Vasil’chuk, YK, Vasil’chuk, JY, Budantseva, NA, Vasil’chuk, AC, Trishin, AY. 2017. Isotopic and geochemical features of the Batagaika yedoma (preliminary results). Arctic and Antarctic 3:6998. doi: 10.7256/2453−8922.2017.3.24433. In Russian.Google Scholar
Vasil’chuk, YK, Vasil’chuk, AC. 2017. Validity of radiocarbon ages of Siberian yedoma. GeoResJ 13:8395. doi: 10.1016/j.grj.2017.02.004.CrossRefGoogle Scholar
Vasil’chuk, YK, Vasil’chuk, AC, Stanilovskaya, JV. 2018. Early Holocene climate signals from stable isotope composition of ice wedge in the Chara Basin, Northern Transbaikalia, Russia. Geoscience Frontiers 9(2): 471483. doi: 10.1016/j.gsf.2017.04.008.CrossRefGoogle Scholar
Vasil’chuk, YK, Vasil’chuk, JY, Budantseva, NA, Vasil’chuk, AC, Trishin, AY. 2019. High-resolution oxygen isotope and deuterium diagrams for ice wedges of the Batagay Yedoma, Northern Central Yakutia. Doklady Earth Sciences 487(2):975978. doi: 10.1134/S1028334X19080312.Google Scholar
Vasil’chuk, YK, Vasil’chuk, JY. 2019. The first AMS dating of organic microinclusions in an ice wedge of the upper part of the Batagay yedoma megaslump (Yakutia). Doklady Earth Sciences 489:13181321. doi: 10.1134/S1028334X19110096.CrossRefGoogle Scholar
Vasil’chuk, YK, Vasil’chuk, JY, Budantseva, NA, Vasil’chuk, AC. 2020. New AMS dates of organic microinclusions in ice wedges of the lower part of the Batagay Yedoma, Yakutia. Doklady Earth Sciences 490:100103. doi: 10.1134/S1028334X20020154.CrossRefGoogle Scholar
Vasil’chuk, YK, Surkova, GV. 2020. Verification of the relationship between the isotopic composition of ice wedges and cold-season temperature over the recent 80 years in the Northern Permafrost Zone of Russia. Russian Meteorology and Hydrology 45:791796 doi: 10.3103/S1068373920110060.CrossRefGoogle Scholar
Vasil’chuk, YK, Vasil’chuk, AC. 2020. Isotope-geochemical composition of the ice wedges in the slope yedoma on the Kular Ridge and reconstruction of the mean January air paleotemperature during 47,000–25,000 BP. Earth’s Cryosphere 3(24):2233. doi: 10.21782/EC2541-9994-2020-3(22-33).Google Scholar
Vasil’chuk, YK, Vasil’chuk, AC. 2021. Air January paleotemperature reconstruction 48–15 calibrated ka BP using oxygen isotope ratios from Zelyony Mys yedoma. Earth’s Cryosphere XXV N2(25):4455.Google Scholar
Wetterich, S, Kuzmina, S, Andreev, A, Kienast, F, Meyer, H, Schirrmeister, L, Kuznetsova, T, Sierralta, M. 2008. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia. Quaternary Science Reviews 27(15):15231540. doi: 10.1016/j.quascirev.2008.04.007.CrossRefGoogle Scholar
Wetterich, S, Tumskoy, V, Rudaya, N, Andreev, A, Opel, T, Meyer, H, et al. 2014. Ice complex formation in arctic East Siberia during the MIS3 Interstadial. Quaternary Science Reviews 84: 3955. doi: 10.1016/j.quascirev.2013.11.009.CrossRefGoogle Scholar
Wetterich, S, Meyer, H, Fritz, M, Mollenhauer, G, Rethemeyer, J, Kizyakov, A, Schirrmeister, L, Opel, T. 2021. Northeast Siberian permafrost ice-wedge stable isotopes depict pronounced Last Glacial Maximum winter cooling. Geophysical Research Letters 48:e2020GL092087. doi: 10.1029/2020GL092087.CrossRefGoogle Scholar