Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T02:04:10.341Z Has data issue: false hasContentIssue false

Matching Dendrochronological Dates with the Southern Hemisphere 14C Bomb Curve to Confirm Annual Tree Rings in Pseudolmedia rigida from Bolivia

Published online by Cambridge University Press:  09 February 2016

Laia Andreu-Hayles
Affiliation:
Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA Institut Català de Ciències del Clima (IC3), Barcelona, Catalonia, Spain
Guaciara M Santos*
Affiliation:
Department of Earth System Science, University of California, Irvine, CA, USA
David A Herrera-Ramírez
Affiliation:
Universidad Nacional de Colombia Sede Medellín, Colombia
Javier Martin-Fernández
Affiliation:
Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
Daniel Ruiz-Carrascal
Affiliation:
Escuela de Ingenieria de Antioquia, Colombia International Research Institute for Climate and Society, Columbia University, Palisades, NY, USA
Tatiana E Boza-Espinoza
Affiliation:
Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
Alfredo F Fuentes
Affiliation:
Herbario Nacional de Bolivia, La Paz, Boliva Missouri Botanical Garden, St. Louis, MO, USA
Peter M J⊘rgensen
Affiliation:
Missouri Botanical Garden, St. Louis, MO, USA
*
Corresponding author. Email: gdossant@uci.edu.

Abstract

This study used high-precision radiocarbon bomb-pulse dating of selected wood rings to provide an independent validation of the tree growth periodicity of Pseudolmedia rigida (Klotzsch & H. Karst) Cuatrec. from the Moraceae family, collected in the Madidi National Park in Bolivia. 14C content was measured by accelerator mass spectrometry (AMS) in 10 samples from a single tree covering over 70 yr from 1939 to 2011. These preliminary calendar dates were determined by dendrochronological techniques and were also used to select the samples for 14C AMS. In order to validate these preliminary dates using the established Southern Hemisphere (SH) 14C atmospheric concentration data set, the targeted rings were selected to be formed during periods before and after the 14C bomb spike nuclear tests (i.e. 1950s–1960s). The excellent agreement of the dendrochronological dates and the 14C signatures in tree rings associated with the same dates provided by the bomb-pulse 14C atmospheric values for the SH (SHCal zone 1–2) confirms the annual periodicity of the observed growth layers, and thus the high potential of this species for tree-ring analysis. The lack of discrepancies between both data sets also suggests that there are no significant latitudinal differences between the 14C SHCal zone 1–2 curve and the 14C values obtained from the selected tree rings at this geographic location (14°33′S, 68°49′W) in South America. The annual resolution of P. rigida tree rings opens the possibility of broader applications of dendrochronological analysis for ecological and paleoclimatic studies in the Bolivian tropics, as well as the possibility of using wood samples from some tree species from this region to improve the quality of the bomb-pulse 14C SHCal curve at this latitude.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beltrán-Gutiérrez, L, Valencia-Ramos, G. 2013. Anatomía de los anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Revista de Biología Tropical/International Journal of Tropical Biology 61:1025–37.Google Scholar
Berg, CC. 1972. Olmedieae, Brosimeae (Moraceae). Flora Neotropica Monograph 7. New York: Hafner Publishing.Google Scholar
Berg, CC. 2001. Moreae, Artocarpeae, and Dorstenia (Moraceae) with Introductions to the Family and Ficus and with Additions and Corrections to Flora Neotropica Monograph 7. Flora Neotropica Monograph 83. New York: Hafner Publishing.Google Scholar
Beverly, RK, Beaumont, W, Tauz, D, Ormsby, KM, von Reden, KF, Santos, GM, Southon, JR. 2010. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: status report. Radiocarbon 52(2):301–9.CrossRefGoogle Scholar
Biondi, F, Fessenden, JE. 1999. Radiocarbon analysis of Pinus lagunae tree rings: implications for tropical dendrochronology. Radiocarbon 41(3):241–9.CrossRefGoogle Scholar
Biondi, F, Strachan, SD, Mensing, S, Piovesan, G. 2007. Radiocarbon analysis confirms the annual nature of sagebrush growth rings. Radiocarbon 49(3):1231–40.CrossRefGoogle Scholar
Boninsegna, JA, Argollo, J, Aravena, JC, Barichivich, J, Christie, D, Ferrero, ME, Lara, A, Le Quesne, C, Luckman, BH, Masiokas, M, Morales, M, Oliveira, JM, Roig, F, Srur, A, Villalba, R. 2009. Dendroclimatological reconstructions in South America: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3–4):210–28.CrossRefGoogle Scholar
Bräuning, A. 2009. Climate variability of the tropical Andes since the late Pleistocene. Advances in Geosciences 22:1325.Google Scholar
Bräuning, A. 2011. Editorial note for the special issue on ‘Tropical Dendroecology.’ Trees 25(1):12.Google Scholar
Brienen, R, Zuidema, P. 2005. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146(1):112.Google Scholar
Brienen, RJW, Zuidema, PA. 2006. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. Journal of Ecology 94(2):481–93.Google Scholar
Cardona-Peña, V, Fuetes, A, Cayola, L. 2005. Las moráceas de la región de Madidi, Bolivia. Ecología en Bolivia 40:212–64.Google Scholar
Cook, ER, Kairiukstis, L. 1990. Methods of Dendrochronology in Applications in the Environmental Sciences. Dordrecht: Kluwer. 394 p.Google Scholar
Dezzeo, N, Worbes, M, Ishii, I, Herrera, R. 2003. Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecology 168(1):165–75.CrossRefGoogle Scholar
Fichtler, E, Clark, DA, Worbes, M. 2003. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35(3):306–17.Google Scholar
Fritts, H. 1976. Tree Rings and Climate. New York: Academic Press. 433 p.Google Scholar
Giraldo Jimenez, JA, del Valle Arango, JI. 2011. A growth study of Prioria copaifera (Caesalpinaceae) using dendrochronological techniques. Revista de Biologia Tropical 59(4):1813–31.Google Scholar
Herzog, S, Martinez, R, Jørgensen, P, Tiessen, H. 2011. Climate Change and Biodiversity in the Tropical Andes. São José dos Campos, Brazil and Paris, France: Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). 348 p.Google Scholar
Hogg, A, Hua, Q, Blackwell, P, Buck, C, Guilderson, T, Heaton, T, Niu, M, Palmer, J, Reimer, P, Reimer, R, Turney, C, Zimmerman, S. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 cal yr BP. Radiocarbon 55(4):1889–903.CrossRefGoogle Scholar
Holmes, RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43:6878.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.Google Scholar
Hua, Q, Barbetti, M, Worbes, M, Head, J, Levchenko, VA. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. IAWA Journal 20(3):261–83.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–72.CrossRefGoogle Scholar
Jomelli, V, Pavlova, I, Guin, O, Soliz-Gamboa, C, Contreras, A, Toivonen, JM, Zetterberg, P. 2012. Analysis of the dendroclimatic potential of Polylepis pepei, P. subsericans and P. rugulosa in the tropical Andes (Peru-Bolivia). Tree-Ring Research 68(2):91103.CrossRefGoogle Scholar
Krakauer, NY, Randerson, JT, Primeau, FW, Gruber, N, Menemenlis, D. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus B 58(5):390417.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295–7.Google Scholar
Lopez, L, Villalba, R. 2011. Climate influences on the radial growth of Centrolobium microchaete, a valuable timber species from the tropical dry forests in Bolivia. Biotropica 43(1):41–9.Google Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25(9):1321–4.Google Scholar
McCormac, FG, Reimer, PJ, Hogg, AG, Higham, TFG, Baillie, ML, Palmer, JG, Stuiver, M. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: AD 1850–950. Radiocarbon 44(3):641–51.Google Scholar
Menezes, M, Berger, U, Worbes, M. 2003. Annual growth ring and long term growth patterns of mangrove trees from the Bragança Peninsula, North Brazil. Wetlands Ecology and Management 11(4):233–42.Google Scholar
Moreno Valoyes, M. 2013. Influencia del clima local y del ENSO en el crecimiento de abarco (Cariniana pyriformis), Chocó, Colombia [Maestría thesis]. Medellín: Universidad Nacional de Colombia.Google Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB, Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853–8.CrossRefGoogle ScholarPubMed
Navarro, G, Maldonado, M. 2002. Geografía Ecológica de Bolivia: Vegetación y Ambientes Acuáticos. Cochabamba, Bolivia: Centro de Ecología Simón I. Patiño-Departamento de Difusión. 719 p.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–87.Google Scholar
Rivas-Martínez, S, Rivas-Sáenz, S, Penas, A. 2011. Worldwide bioclimatic classification system. Global Geobotany 1:1634.Google Scholar
Rozendaal, D, Zuidema, P. 2010. Dendroecology in the tropics: a review. Trees 25(1):316.Google Scholar
Ryan, WBF, Carbotte, SM, Coplan, JO, O'Hara, S, Melkonian, A, Arko, R, Weissel, RA, Ferrini, V, Goodwillie, A, Nitsche, F, Bonczkowski, J, Zemsky, R. 2009. Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems 10(3):Q03014, doi: 10.1029/2008GC002332.CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2):534–44.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1):165–73.Google Scholar
Santos, GM, Moore, RB, Southon, JR, Griffin, S, Hinger, E, Zhang, D. 2007. AMS 14C sample preparation at the KCCAMS/UCI Facility: status report and performance of small samples. Radiocarbon 49(2):255–70.CrossRefGoogle Scholar
Schöngart, J. 2008. Growth-oriented logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecology and Management 256(1–2):4658.CrossRefGoogle Scholar
Scott, EM, Boaretto, E, Bryant, C, Cook, GT, Gulliksen, S, Harkness, DD, Heinemeier, J, McGee, E, Naysmith, P, Possnert, G, van der Plicht, H, Van Strydonck, M. 2004. Future needs and requirements for AMS 14C standards and reference materials. Nuclear Instruments and Methods in Physics Research B 223–224:382–7.Google Scholar
Solíz, C, Villalba, R, Argollo, J, Morales, MS, Christie, DA, Moya, J, Pacajes, J. 2009. Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3–4):296308.Google Scholar
Soliz-Gamboa, C, Rozendaal, DMA, Ceccantini, G, Angyalossy, V, van der Borg, K, Zuidema, PA. 2011. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25(1):1727.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):1371–9.Google Scholar
Stokes, M, Smiley, T. 1968. An Introduction to Tree-Ring Dating. Chicago: University of Chicago Press. 73 p.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Villalba, R, Luckman, B, Boninsegna, J, D'Arrigo, R, Lara, A, Villanueva-Diaz, J, Masiokas, M, Argollo, J, Soliz, C, LeQuesne, C, Stahle, D, Roig, F, Aravena, J, Hughes, M, Wiles, G, Jacoby, G, Hartsough, P, Wilson, RS, Watson, E, Cook, E, Cerano-Paredes, J, Therrell, M, Cleaveland, M, Morales, M, Graham, N, Moya, J, Pacajes, J, Massacchesi, G, Biondi, F, Urrutia, R, Pastur, G. 2011. Dendroclimatology from regional to continental scales: understanding regional processes to reconstruct large-scale climatic variations across the Western Americas. In: Hughes, MK, Swetnam, TW, Diaz, HF, editors. Dendroclimatology. Dordrecht: Springer Netherlands. p 175227.Google Scholar
Westbrook, JA, Guilderson, TP, Colinvaux, PA. 2006. Annual growth rings in a sample of Hymenaea courbaril. IAWA Journal 27(2):193–7.Google Scholar
Wils, TH, Robertson, I, Eshetu, Z, Sass-Klaassen, UG, Koprowski, M. 2009. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from cross-dating and radiocarbon dating. Dendrochronologia 27(1):4558.CrossRefGoogle Scholar
Worbes, M. 2002. One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217–31.Google Scholar
Yamaguchi, DK. 1991. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21:414–6.CrossRefGoogle Scholar