Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T02:01:18.842Z Has data issue: false hasContentIssue false

Landslide Fens as a Sensitive Indicator of Paleoenvironmental Changes Since the Late Glacial: A Case Study of the Polish Western Carpathians

Published online by Cambridge University Press:  27 July 2018

Włodzimierz Margielewski*
Affiliation:
Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza Ave. 33, 31-120 Kraków, Poland
*
*Corresponding author. Email: margielewski@iop.krakow.pl.

Abstract

In the sequences of landslide fen (mire) deposits of the Polish Western Carpathians, Late Glacial-Holocene paleoenvironmental changes were recorded. Downpours and/or continuous rains cyclically repeated during phases of climate humidity growth, causing supplies of mineral material to the minerogenic mires. In effect, illuvial or mineral horizons were formed in landslide fen deposits, as well as mineral covers overly fens in some sites. Sedimentological records reflect various, overlapping factors, as climatic changes, human activity (e.g. accelerating erosion), as well the specificity of the sedimentary environment in each studied landslide fens. The reconstruction and interpretation of the paleoenvironmental changes recorded in landslide fen sediments must be supported by multiproxy analysis of the sequences using pollen, lithological (loss on ignition, grain size and petrography) analyses of samples accurately dated by numerous radiocarbon (14C) dates.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrowicz, SW. 1996. Stages of increased mass movements in the Carpathians during the Holocene. Kwartalnik AGH, Geologia 22(3):223262.Google Scholar
Alexandrowicz, SW. 1997. Holocene dated landslides in the Polish Carpathians. In: Frenzel B, editor. Rapid Mass Movement as a Source of Climatic Evidence for the Holocene. Palaeoclimate Research 19:7583.Google Scholar
Alexandrowicz, WP. 2006. Molluscan assemblages in the deposits of landslide dammed lakes as indicators of late Holocene mass movements in the Polish Carpathians. Geomorphology 180-181:1023.Google Scholar
Berglund, BE, Ralska-Jasiewiczowa, M. 1986. Pollen analysis and pollen diagrams. In: Berglund B, Ralska-Jasiewiczowa M, editors. Handbook of Holocene Palaeogeography and Palaeohydrology. Chichester-Toronto: Wiley. p 455484.Google Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, Demenocal, P, Priore, P, Cullen, H, Hajdas, I, Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):12571266.Google Scholar
Borgatti, L, Soldati, M. 2010. Landslides as a geomorphological proxy for climate change: A record from the Dolomites (northern Italy). Geomorphology 120:5664.Google Scholar
Borgatti, L, Ravazzi, C, Donegana, M, Corsini, A, Marchetti, M, Soldati, M. 2007. A lacustrine record of Early Holocene watershed events and vegetation history, Corvara in Badia, Dolomites (Italy). Journal of Quaternary Science 22(2):173189.Google Scholar
Bortenschlager, S. 1982. Chronostratigraphic Subdivision of the Holocene in the Alps. Striae 16:7579.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Dapples, F, Lotter, F, Van Leeuwen, JN, Van der Knapp, WO, Dimitriadis, S, Oswald, D. 2002. Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology 27:239248.Google Scholar
Dynowska, I. 1986. Regional differentiation of springs in Poland. Folia Geographica, ser. Geographica . Physica 18:530.Google Scholar
Gil, E., Gilot, E., Szczepanek, K., Kotarba, A., Starkel, L. 1974. An Early Holocene landslide in the Beskid Niski and its significance for palaeogeographical reconstructions. Studia Geomorphologica Carpatho-Balcanica 8:6983.Google Scholar
Haczewski, G, Kukulak, J. 2004. Early Holocene landslide-dammed lake in the Bieszczady Mountains (Polish East Carpathians) and its evolution. Studia Geomorphologica Carpatho-Balcanica 38:8396.Google Scholar
Heiri, O, Lotter, AF, Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Palaeolimnology 25:101110.Google Scholar
Hoffmann, T, Lang, A, Dikau, R. 2008. Holocene river activity: analyzing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews 27:20312040.Google Scholar
Jankowski, L, Margielewski, W. 2014. Structural control on the Outer Carpathians relief – a new approach. Przegląd Geologiczny 62(1):2935.Google Scholar
Kaule, G, Göttlich, K. 1976. Begriffsbestimmungen anhand der Moortypen Mitteleuropas. (Classification of bogs of Central Europe). Moor-und Torfkunde. E. Schweizerbart’sche Verlagsbuchhandlung. Stuttgart.Google Scholar
Kołaczek, P, Margielewski, W, Gałka, M, Apolinarska, K, Płóciennik, M, Gąsiorowski, M, Buczek, K, Karpińska-Kołaczek, M. 2017. Five centuries of the Early Holocene forest development and its interactions with palaeoecosystem of small lake in the Beskid Makowski Mountains (Western Carpathians, Poland)—High resolution multi-proxy study. Review of Palaeobotany and Palynology 244:113127.Google Scholar
Kotarba, A. 1996. Sedimentation rate in the High Tatra Lakes during the Holocene—geomorphic interpretation. Studia Geomorphologica Carpatho-Balcanica 30:5156.Google Scholar
Kotarba, A, Baumgart-Kotarba, M. 1997. Holocene debris flow activity in the light of lacustrine sediment studies in the High Tatra Mountains, Poland. In: Frenzel B, editor. Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research 19:147158.Google Scholar
Książkiewicz, M. 1972. Karpaty (Carpathians). In: Pożaryski W, editor. Budowa Geologiczna Polski (Geology of Poland). Vol. IV, Tektonika. Warszawa: Wyd. Geol. p 1228.Google Scholar
Litt, T, Brauer, A, Goslar, T, Merkt, J, Bałaga, K, Mueller, H, Ralska-Jasiewiczowa, M, Stebich, M, Negendank, JF. 2001. Correlation and synchronisation of Lateglacial continental sequences in northern Central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20:12331249.Google Scholar
Magny, M, Begeot, C, Guiot, J, Payron, O. 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22:15891596.Google Scholar
Mangerud, J, Andersen, ST, Berglund, B, Donner, JJ. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3:109126.Google Scholar
Margielewski, W. 1998. Landslide phases in the Polish Outer Carpathians and their relation to the climatic changes in the Late Glacial and the Holocene. Quaternary Studies in Poland 15:3753.Google Scholar
Margielewski, W. 2001. Late Glacial and Holocene climatic changes registered in forms and deposits of the Klaklowo landslide (Beskid Średni Range, Outer Carpathians). Studia Geomorphologica Carpatho-Balcanica 35:6379.Google Scholar
Margielewski, W, editor. 2003. Late Glacial-Holocene palaeoenvironmental changes in the Western Carpathians: case studies of landslide forms and deposits. Folia Quaternaria 74:196.Google Scholar
Margielewski, W. 2006. Records of the Late Glacial–Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish Outer Carpathians). Folia Quaternaria 76:1149.Google Scholar
Margielewski, W, Kovalyukh, NN. 2003. Neoholocene climatic changes recorded in landslide’s peat bog on Mount Ćwilin (Beskid Wyspowy Range, Outer Carpathians). Studia Geomorphologica Carpatho-Balcanica 37:5976.Google Scholar
Margielewski, W, Urban, J. 2017. Gravitationally induced non-karst caves: Tectonic and morphological constrains, classification, and dating; Polish Flysch Carpathians case study. Geomorphlology 296:160181.Google Scholar
Margielewski, W, Michczyński, A, Obidowicz, A. 2010. Records of the Middle-and Late Holocene palaeoenvironmental changes in the Pcim-Sucha landslide peat bogs (Beskid Makowski Mts., Polish Outer Carpathians). Geochronometria 35:1123.Google Scholar
Margielewski, W, Kołaczek, P, Michczyński, A, Obidowicz, A, Pazdur, A. 2011. Record of the Meso-and Neoholocene palaeoenvironmental changes in the Jesionowa landslide peat bog (Beskid Sądecki Mts., Polish Outer Carpathians). Geochronometria 38(2):138154.Google Scholar
Michczyński, A, Kołaczek, P, Margielewski, W, Michczyńska, DJ, Obidowicz, A. 2013. Radiocarbon age-depth modeling prevents from misinterpretation of vegetation dynamic in the past: case study Wierchomla Mire (Polish Outer Carpathians). Radiocarbon 55(2-3):17241734.Google Scholar
Mycielska-Dowgiałło, E, Rutkowski, J. editors. 1995. Research of Quaternary Sediments. Some Methods and Interpretation of the Results. Warsaw: Faculty of Geography and Regional Studies University of Warsaw. p 29105.Google Scholar
Obidowicz, A. 1985. Torfowiska górskie w Europie (Mountainous mires in the Europe). Kosmos 34(2):299310.Google Scholar
Obidowicz, A, Margielewski, W. 2008. Problematyka klasyfikacji torfowisk górskich (Problems of the mountainous mires classification). In: Żurek S, editor. Torfowiska gór, wyżyn i niżu. Wydawnictwo Uniwersytetu Humanistyczno-Przyrodniczego im. Jana Kochanowskiego w Kielcach. p 103-109.Google Scholar
Obrębska-Starklowa, B, Hess, M, Olecki, Z, Trepińska, J, Kowanetz, L. 1995. Klimat (Climate). In: Warszyńska J, editor. Karpaty polskie. Przyroda, człowiek i jego działalność. UJ Kraków. p 3147.Google Scholar
Oszczypko, N. 2006. Late Jurassic-Miocene evolution of the Outer Carpathians fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly 50(1):169193.Google Scholar
Pánek, T, Smolková, V, Hradecký, J, Baroň, I, Šilhán, K. 2013. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/ /Slovakia). Quaternary Research 80:3346.Google Scholar
Pettijohn, FJ. 1975. Sedimentary Rocks. 3rd ed. New York: Harper and Row. 628 p.Google Scholar
Ralska-Jasiewiczowa, M, Starkel, L. 1988. Record of the hydrological changes during the Holocene in the lake, mire and fluvial deposits of Poland. Folia Quaternaria 57:91127.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, C, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Ringler, A. 1978. Die Hochmoore Und Ubergangsmoore der Allgauer. Teil I: Lage, Geologie, Morphologie. (The raised bogs and transitional moors of the Allgauer. Part I: Location, geology, morphology). Telma 8:1724.Google Scholar
Rydin, H, Jeglum, JK. 2013. The biology of peatlands. 2nd ed. Oxford University Press. 381 p.Google Scholar
Starkel, L. 1972. An outline of the relief of the Polish Carpathians and its importance for Human management. Problemy Zagospodarowania Ziem Górskich 10:75150.Google Scholar
Starkel, L. 1988. Man’s activity as a cause of changes of denudation and sedimentation processes in the Holocene. Przegląd Geograficzny 60(3):251265.Google Scholar
Starkel, L. 1997. Mass movement during the Holocene: Carpathian example and the European perspective. In: Frenzel B, editor. Rapid Mass Movement as a Source of Climatic Evidence for the Holocene. Palaeoclimate Research 19:385400.Google Scholar
Starkel, L. 2006. Clusterings of extreme rainfalls and evolution of fluvial systems in the Holocene. Studia . Quaternaria 23:2328.Google Scholar
Starkel, L, Soja, R, Michczyńska, DJ. 2006. Past hydrological events reflected in Holocene history of Polish Rivers. Catena 66:2433.Google Scholar
Starkel, L, Kalicki, T, Krąpiec, M, Soja, R, Gębica, P, Czyżowska, E. 1996. Hydrological changes of valley floor in the Upper Vistula Basin during Late Vistulian and Holocene. Geographical Studies, Special Issue 9:1128.Google Scholar
Starkel, L, Michczyńska, DJ, Krąpiec, M, Margielewski, W, Nalepka, D, Pazdur, A. 2013. Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40:121.Google Scholar
Tobolski, K. 2000. Przewodnik do oznaczania torfów i osadów jeziornych (Guide of classification of peat and lacustrine sediments). Wyd. Nauk. PWN Warszawa 2000. 507 p.Google Scholar
Wanner, H, Mercolli, L, Grosjean, M, Ritz, SP. 2015. Holocene climate variability and change: a data based review. J. Geol. Soc. 172:254263.Google Scholar
Wójcik, A. 1997. Landslides in the Koszarawa drainage basin—structural and geomorphological control (Western Carpathians, Beskid Żywiecki Mts.). Biuletyn Państwowego Instytutu Geologicznego 376:542.Google Scholar
Zolitschka, B, Behre, K, Sneider, J. 2003. Human and climatic impact on the environment and derived from colluvial, fluvial and lacustrine archives—example from Bronze Age to the Migration Period, Germany. Quaternary Science Reviews 22:81100.Google Scholar
Żurek, S. 1986. Accumulation rate of peats and gyttjas in the profile of peatlands and lakes of Poland (as based on the radiocarbon dating). Przegląd Geograficzny 58(3):459475.Google Scholar
Żurek, S. 1987. The peat deposits of Poland against the peat zones of Europe. Dokumentacja Geograficzna 4:181.Google Scholar