Skip to main content Accessibility help
×
Home

Investigating Subantarctic 14C Ages of Different Peat Components: Site and Sample Selection for Developing Robust Age Models in Dynamic Landscapes

  • Zoë A Thomas (a1) (a2) (a3), Chris S M Turney (a1) (a2) (a3), Alan Hogg (a4), Alan N Williams (a2) (a3) (a5) and Chris J Fogwill (a1) (a2) (a6)...

Abstract

Precise radiocarbon (14C) dating of sedimentary sequences is important for developing robust chronologies of environmental change, but sampling of suitable components can be challenging in highly dynamic landscapes. Here we investigate radiocarbon determinations of different peat size fractions from six peat sites, representing a range of geomorphological contexts on the South Atlantic subantarctic islands of the Falklands and South Georgia. To investigate the most suitable fraction for dating, 112 measurements were obtained from three components within selected horizons: a fine fraction <0.2 mm, a coarse fraction >0.2 mm, and bulk material. We find site selection is critical, with locations surrounded by high-ground and/or relatively slowly accumulating sites more susceptible to the translocation of older carbon. Importantly, in locations with reduced potential for redeposition of material, our results show that there is no significant or systematic difference between ages derived from bulk material, fine or coarse (plant macrofossil) material, providing confidence in the resulting age model. Crucially, in areas comprising complex terrain with extreme relief, we recommend dating macrofossils or bulk carbon rather than a fine fraction, or employing comprehensive dating of multiple sedimentary fractions to determine the most reliable fraction(s) for developing a robust chronological framework.

Copyright

Corresponding author

*Corresponding author. Email: z.thomas@unsw.edu.au.

References

Hide All
Amesbury, MJ, Roland, TP, Royles, J, Hodgson, DA, Convey, P, Griffiths, H, Charman, DJ. 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology 27(11):16161622.e2. doi: 10.1016/j.cub.2017.04.034.
Barrow, C. 1978. Postglacial pollen diagrams from South Georgia (Sub-Antarctic) and West Falkland island (South Atlantic). Journal of Biogeography 5(3):251274. doi: 10.2307/3038040.
Bentley, MJ, Evans, DJA, Fogwill, CJ, Hansom, JD, Sugden, DE, Kubik, PW. 2007. Glacial geomorphology and chronology of deglaciation, South Georgia, Sub-Antarctic. Quaternary Science Reviews 26(5–6):644677. doi: 10.1016/j.quascirev.2006.11.019.
Berg, S, White, DA, Jivcov, S, Melles, M, Leng, MJ, Rethemeyer, J, Allen, C, Perren, B, Bennike, O, Viehberg, F. 2019. Holocene glacier fluctuations and environmental changes in subantarctic South Georgia inferred from a sediment record from a coastal inlet. Quaternary Research 91(1):132148. doi: 10.1017/qua.2018.85.
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457474. doi: 10.1214/11-BA618.
Blaauw, M, van der Plicht, J, van Geel, B. 2004. Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported “reservoir effect”? Quaternary Science Reviews 23(14–15):15371542. doi: 10.1016/j.quascirev.2004.04.002.
Blockley, SPE, Lane, CS, Hardiman, M, Rasmussen, SO, Seierstad, IK, Steffensen, JP, Svensson, A,Lotter, AF, Turney, CSM, Bronk, Ramsey C. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE 1 event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:210. doi: 10.1016/j.quascirev.2011.09.017.
Brock, F, Higham, T, Ditchfield, P, Bronk, Ramsey C. 2010. Current pretreatment methods for ams radiocarbon dating at the oxford radiocarbon accelerator unit (ORAU). Radiocarbon 52(1):103112. doi: 10.1017/S0033822200045069.
Brock, F, Lee, S, Housley, RA, Bronk, Ramsey C. 2011. Variation in the radiocarbon age of different fractions of peat: a case study from Ahrenshöft, Northern Germany. Quaternary Geochronology 6(6):550555. doi: 10.1016/j.quageo.2011.08.003.
Bronk, Ramsey C. 2017. OxCal program, version 4.3.
Bronk, Ramsey C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730. doi: 10.2458/azu_js_rc.55.16215.
Chu, Z, Sun, L, Huang, W, Huang, T, Zhou, X. 2016. On selecting bulk fjord sediment samples for radiocarbon dating in Fildes Peninsula, Antarctica. Quaternary International 425:173182. doi: 10.1016/j.quaint.2015.10.118.
Clark, R, Huber, UM, Wilson, P. 1998. Late Pleistocene sediments and environmental change at Plaza Creek, Falkland Islands, South Atlantic. Journal of Quaternary Science 13(2):95105.
Cook, AJ, Poncet, S, Cooper, APR, Herbert, DJ, Christie, D. 2010. Glacier retreat on South Georgia and implications for the spread of rats. Antarctic Science 22(3):255263. doi: 10.1017/s0954102010000064.
Gallego-Sala, AV, Charman, DJ, Brewer, S, Page, SE, Prentice, IC, Friedlingstein, P, Moreton, S, Amesbury, MJ, Beilman, DW, Björck, S et al. 2018. Latitudinal limits to the predicted increase of the Peatland carbon sink with warming. Nature Climate Change 8:907913. doi: 10.1038/s41558-018-0271-1.
Gordon, JE, Haynes, VM, Hubbard, A. 2008. Recent glacier changes and climate trends on South Georgia. Global Planetary Change 60(1–2):7284. doi: 10.1016/j.gloplacha.2006.07.037.
Hill, TCB, Hill, GE, Brunning, R, Banerjea, RY, Fyfe, RM, Hogg, AG, Jones, J, Perez, M, Smith, DN. 2019. Glastonbury lake village revisited: a multi-proxy palaeoenvironmental investigation of an Iron Age wetland settlement. Journal of Wetland Archaeology 18(2):115137. doi: 10.1080/14732971.2018.1560064.
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCAL13 Southern Hemisphere calibration, 0–50, 000 years cal BP. Radiocarbon 55(4):18891903.
Holmquist, JR, Finkelstein, SA, Garneau, M, Massa, C, Yu, Z, MacDonald, GM. 2016. A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic Peatlands. Quaternary Geochronology 31:5361. doi: 10.1016/j.quageo.2015.10.003.
Howarth, JD, Fitzsimons, SJ, Jacobsen, GE, Vandergoes, MJ, Norris, RJ. 2013. Identifying a reliable target fraction for radiocarbon dating sedimentary records from lakes. Quaternary Geochronology 17:6880. doi: 10.1016/j.quageo.2013.02.001.
IPCC AR5. 2013. Climate change 2013: the physical science basis. In: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM, editors. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press.
Ivanov, KE. 1981. Water movement in Mirelands. London: Academic Press.
Jones, JM, Gille, ST, Goosse, H, Abram, NJ, Canziani, PO, Charman, DJ, Clem, KR, Crosta, X, de Lavergne, C, Eisenman, I et al. 2016. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change 6(10):917926. doi: 10.1038/nclimate3103.
Joosten, H, De Klerk, P. 2007. In search of finiteness: the limits of fine-resolution palynology of Sphagnum peat. Holocene 17(7):10231031. doi: 10.1177/0959683607082416.
Kershaw, PA, McKenzie, G, Porch, N, Roberts, RG, Brown, J, Heijnis, H, Orr, ML, Jacobson, G, Newall, PR. 2007. A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, Southeastern highlands of Australia. Journal of Quaternary Science 22(8):481500. doi: 10.1002/jqs.
Kilian, MR, van Geel, B, van der Plicht, J. 2000. 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quaternary Science Reviews 19:10111033. doi: 10.1016/S0277-3791(99)00049-9.
Lister, D, Jones, P. 2014. Long-term temperature and precipitation records from the Falkland Islands. International Journal of Climatology 35(7):12241231. doi: 10.1002/joc.4049.
Lowe, JJ, Walker, MJC. 1997. Reconstructing quaternary environments. 2nd edition. London: Routledge.
Martin, L, Goff, J, Jacobsen, G, Mooney, S. 2018. The radiocarbon ages of different organic components in the Mires of Eastern Australia. Radiocarbon 61(1):112. doi: 10.1017/RDC.2018.118.
McGlone, MS, Turney, CSM, Wilmshurst, J. 2014. Late-glacial and Holocene vegetation and climatic history of the Cass Basin, central South Island, New Zealand. Quaternary Research 62:267279.
McGlone, MS, Turney, CSM, Wilmshurst, JM, Renwick, J, Pahnke, K. 2010. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18, 000 years. Nature Geoscience 3(9):622626. doi: 10.1038/ngeo931.
McGlone, MS, Wilmshurst, JM. 1999. Dating initial Maori enviromental impact in New Zealand. Quaternary International 59:516.
Nilsson, M, Klarqvist, M, Bohlin, E, Possnert, G. 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. Holocene 11(5):579586. doi: 10.1191/095968301680223521.
Olsson, IU. 1986. Study of errors in 14C dates of peat and sediment. Radiocarbon 28(2):429435.
Oppedal, LT, Bakke, J, Paasche, Ø, Werner, JP, van der Bilt, WGM. 2018. Cirque glacier on South Georgia shows centennial variability over the last 7000 years. Frontiers of Earth Science 6(2). doi: 10.3389/feart.2018.00002.
Orsi, AH, Whitworth, T, Nowlin, WD. 1995. On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Research Part I 42(5):641673. doi: 10.1016/0967-0637(95)00021-W.
Oswald, WW, Anderson, PM, Brown, TA, Brubaker, LB, Feng, SH, Lozhkin, AV, Tinner, W, Kaltenrieder, P. 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15(5):758767. doi: 10.1191/0959683605hl849rr.
Piotrowska, N, Blaauw, M, Mauquoy, D, Chambers, FM. 2011. Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires and Peat 7(10):114. doi: 10.1111/j.1365-2486.2009.01920.x.
Rainsley, E, Turney, CSM, Golledge, NR, Wilmshurst, JM, McGlone, MS, Hogg, AG, Li, B, Thomas, ZA, Roberts, R, Jones, RT et al. 2019. Pleistocene glacial history of the New Zealand subantarctic islands. Climate of the Past 15:423448.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB. 2013a. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Brown, DM, Buck, CE, Edwards, RL, Friedrich, M et al. 2013b. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4):19231945. doi: 10.2458/azu_js_rc.55.16955.
Scott, EM, Cook, GT, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in Stage 3. Radiocarbon 52(3):859865.
Shore, JS, Bartley, DD, Harkness, DD. 1995. Problems encountered with the 14C dating of peat. Quaternary Science Reviews 14:373383.
Southon, J, Santos, G, Druffel-Rodriguez, K, Druffel, E, Trumbore, S, Xu, X, Griffin, S, Ali, S, Mazon, M. 2004. The Keck carbon cycle AMS laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46(1):4149.
Strother, SL, Salzmann, U, Roberts, SJ, Hodgson, DA, Woodward, J, Van Nieuwenhuyze, W, Verleyen, E, Vyverman, W, Moreton, SG. 2015. Changes in Holocene climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia. The Holocene 25(2):263279. doi: 10.1177/0959683614557576.
Thomas, ZA. 2016. Using natural archives to detect climate and environmental tipping points in the earth system. Quaternary Science Reviews 152:6071. doi: 10.1016/j.quascirev.2016.09.026.
Thomas, ZA, Jones, RT, Fogwill, CJ, Hatton, J, Williams, A, Hogg, AG, Mooney, SD, Jones, PD, Lister, D, Mayewski, PA, Turney, CSM. 2018a. Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene. Climate of the Past 14:17271738. doi: 10.5194/cp-14-1727-2018.
Thomas, Z, Turney, C, Allan, R, Colwell, S, Kelly, G, Lister, D, Jones, P, Beswick, M, Alexander, L, Lippmann, T, Herold, N, Jones, R. 2018b. A new daily observational record from Grytviken, South Georgia: exploring 20th century extremes in the South Atlantic. Journal of Climate 31(5):17431755. doi: 10.1175/JCLI-D-17-0353.1.
Turetsky, MR, Manning, SW, Wieder, RK. 2004. Dating recent peat deposits. Wetlands 24(2):324356. doi: 10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2.
Turney, CSM, Coope, GR, Harkness, DD, Lowe, JJ, Walker, MJC. 2000. Implications for the dating of Wisconsinan (Weichselian) Late-glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland. Quaternary Research 53(1):114121. doi: 10.1006/qres.1999.2087.
Turney, CSM, Jones, RT, Lister, D, Jones, P, Williams, AN, Hogg, A, Thomas, ZA, Compo, GP, Yin, X, Fogwill, CJ et al. 2016a. Anomalous mid-twentieth century atmospheric circulation change over the South Atlantic compared to the last 6000 years. Environmental Research Letters 11(6):064009. doi: 10.1088/1748-9326/11/6/064009.
Turney, CSM, Jones, R, Fogwill, C, Hatton, J, Williams, AN, Hogg, A, Thomas, Z, Palmer, J, Mooney, S. 2016b. A 250 year periodicity in Southern Hemisphere westerly winds over the last 2600 years. Climate of the Past 12:189200. doi: 10.5194/cpd-11-2159-2015.
Turney, CSM, Palmer, J, Maslin, MA, Hogg, A, Fogwill, CJ, Southon, J, Fenwick, P, Helle, G., Wilmshurst, JM, McGlone, M, et al. 2018. Global peak in atmospheric radiocarbon provides a potential definition for the onset of the Anthropocene Epoch in 1965. Scientific Reports 8(1):3293. doi: 10.1038/s41598-018-20970-5
van der Bilt, WGM, Bakke, J, Werner, JP, Paasche, Ø, Rosqvist, G, Vatle, SS. 2017. Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage little Ice Age on Subantarctic South Georgia. Journal of Quaternary Science 32(6):888901. doi: 10.1002/jqs.2937.
van der Putten, N, Stieperaere, H, Verbruggen, C, Ochyra, R. 2004. Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. The Holocene 14(3):382392. doi: 10.1016/j.quascirev.2008.09.023.
van der Putten, N, Verbruggen, C, Ochyra, R, Spassov, S, de Beaulieu, JL, De Dapper, M, Hus, J, Thouveny, N. 2009. Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica): based on a botanical macrofossil record. Quaternary Science Reviews 28(1–2):6579. doi: 10.1016/j.quascirev.2008.09.023.
Wessel, P, Smith, WHF, Scharroo, R, Luis, J, Wobbe, F. 2013. Generic mapping tools: improved version released, Eos, Transactions. American Geophysical Union 94(45):409410. doi: 10.1002/2013EO450001.
White, DA, Bennike, O, Melles, M, Berg, S, Binnie, SA. 2018. Was South Georgia covered by an ice cap during the Last Glacial Maximum? Geological Society, London, Special Publications 461(1):4959. doi: 10.1144/SP461.4.
Wilson, P, Clark, R, Birnie, J, Moore, DM. 2002. Late Pleistocene and Holocene landscape evolution and environmental change in the Lake Sulivan area, Falkland Islands, South Atlantic. Quaternary Science Reviews 21(16–17):18211840. doi: 10.1016/S0277-3791(02)00008-2.
Wüst, RAJ, Jacobsen, GE, van der Gaast, H, Smith, AM. 2008. Comparison of radiocarbon ages from different organic fractions in tropical peat cores: insights from Kalimantan, Indonesia. Radiocarbon 50(3):359372. doi: 10.1017/S0033822200053492.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed