Skip to main content Accessibility help
×
Home

The Influences of Hydrology on the Radiogenic and Stable Carbon Isotope Composition of Cave Drip Water, Grotta di Ernesto (Italy)

  • J Fohlmeister (a1), A Schröder-Ritzrau (a1), C Spötl (a2), S Frisia (a3), R Miorandi (a4), B Kromer (a1) and A Mangini (a1)...

Abstract

14C and δ13C values of C-containing species in cave drip waters are mainly controlled by the C isotope composition of karst rock and soil air, as well as by soil carbon dynamics, in particular the amount of soil CO2 in the unsaturated soil zone and the process of calcite dissolution. Here, we investigate soil carbon dynamics by analyzing the 14C activity and δ13C values of C dissolved in cave drip water. Monthly over a 2-yr period, we collected drip water from 2 drip sites, one fast and one relatively slow, within the shallow Grotta di Ernesto Cave (NE Italy). The 14C data reveal a pronounced annual cycle. In contrast, the δ13C values do not show an annual pattern and only small interannual variability compared to the δ13C values of soil waters. The annual 14C drip-water cycle is a function of drip-rate variability, soil moisture, and ultimately hydrology.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Influences of Hydrology on the Radiogenic and Stable Carbon Isotope Composition of Cave Drip Water, Grotta di Ernesto (Italy)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Influences of Hydrology on the Radiogenic and Stable Carbon Isotope Composition of Cave Drip Water, Grotta di Ernesto (Italy)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Influences of Hydrology on the Radiogenic and Stable Carbon Isotope Composition of Cave Drip Water, Grotta di Ernesto (Italy)
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: jens.fohlmeister@iup.uni-heidelberg.de.

References

Hide All
Andrews, JA, Harrison, KG, Matamala, R, Schlesinger, WH. 1999. Separation of root respiration from total soil respiration using carbon-13 labelling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Science Society of America Journal 63:1429–35.
Avanzini, M, Frisia, S, van den Driessche, K, Keppens, E. 1997. A dinosaur tracksite in an Early Liassic tidal flat in northern Italy: paleoenvironmental reconstruction from sedimentology and geochemistry. PALAIOS 12(6):538–51.
Baldini, JUL, McDermott, F, Hoffmann, DL, Richards, DA, Clipson, N. 2008. Very high-frequency and seasonal cave atmosphere pCO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters 272(1–2):118–29.
Borsato, A. 1997. Dripwater monitoring at Grotta di Ernesto (NE Italy): a contribution to the understanding of karst hydrology and the kinetics of carbonate dissolution. In: Proceedings of the 12th International Congress of Speleology. Volume 2. p 5760.
Borsato, A, Frisia, S, Fairchild, IJ, Somogyi, A, Susini, J. 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochimica et Cosmochimica Acta 71(6):1494–512.
Bowling, DR, McDowell, NG, Bond, BJ, Law, BE, Ehleringer, JR. 2002. 13C content of ecosystem respiration is linked to precipitation and vapour pressure deficit. Oecologia 131(1):113–24.
Cerling, TE. 1984. The stable isotopic composition of modern soil carbonate and its relationships to climate. Earth and Planetary Science Letters 71(2):229–40.
Clark, ID, Fritz, P. 1997. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press. 328 p.
Criss, R, Davisson, L, Surbeck, H, Winston, W. 2007. Isotopic methods. In: Goldscheider, N, Drew, D, editors. Methods in Karst Hydrogeology. London: Taylor and Francis. p 123–45.
Deines, P. 1980. The isotopic composition of reduced organic soil. In: Fritz, P, Fontes, JC, editors. Handbook of Isotope Geochemistry, 1 The Terrestrial Environment. Amsterdam: Elsevier. p 329406.
Dörr, H, Münnich, KO. 1986. Annual variations of the 14C content. Radiocarbon 28(2A):338–45.
Dreybrodt, W. 1988. Processes in Karst Systems - Physics, Chemistry and Geology. Berlin: Springer Verlag. 288 p.
Dulinski, M, Rozanski, K. 1990. Formation of 13C/12C isotope ratios in speleothems: a semi-dynamic model. Radiocarbon 32(1):716.
Ekblad, A, Högberg, P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–8.
Fairchild, IJ, Bradby, L, Sharp, M, Tison, J-L. 1994. Hydrochemistry of carbonate terrains in alpine glacial settings. Earth Surface Processes and Landforms 19:3354.
Fairchild, IJ, Borsato, A, Tooth, AF, Frisia, S, Hawkesworth, CJ, Huang, Y, McDermott, F, Spiro, B. 2000. Controls on trace element (Sr-Mg) compositions of carbonate cave water: implications for speleothem climatic records. Chemical Geology 166(3–4):255–69.
Fairchild, IJ, Tuckwell, GW, Baker, A, Tooth, AF. 2006. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): implications for climate change. Journal of Hydrology 321(1–4):213–31.
Fohlmeister, J, Kromer, B, Mangini, A. Forthcoming. The influence of soil organic matter age spectrum on the reconstruction of atmospheric 14C levels via stalagmites. Radiocarbon.
Frisia, S, Borsato, A, Fairchild, IJ, McDermott, F. 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and south-western Ireland. Journal of Sedimentary Research 70(5):1183–96.
Frisia, S, Borsato, A, Preto, N, McDermott, F. 2003. Late Holocene annual growth in three alpine stalagmite records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth and Planetary Science Letters 216(3):411–24.
Frisia, S, Borsato, A, Fairchild, IJ, Susini, S. 2005. Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses. Earth and Planetary Science Letters 235(3–4):729–40.
Frisia, S, Fairchild, IJ, Fohlmeister, J, Miorandi, R, Spötl, C, Borsato, A. 2010. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochimica et Cosmochimica Acta. doi: 10.1016/j.gca.2010.10.021.
Garrels, RM, Christ, CL. 1965. Solutions, Minerals and Equilibria. New York: Harper & Row. 450 p.
Genty, D, Massault, M. 1997. Bomb 14C recorded in laminated speleothems: calculations of dead carbon proportion. Radiocarbon 39(1):3348.
Genty, D, Massault, M. 1999. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France—modelling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta 63(10):1537–48.
Genty, D, Vokal, B, Obelic, B, Massault, M. 1998. Bomb 14C time history recorded in two modern stalagmites—importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160(3–4):795809.
Gorczyca, Z, Rozanski, K, Kuc, T, Michalec, B. 2003. Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland. Nukleonika 48(4):187–96.
Hendy, CH. 1970. The use of 14C in the study of cave processes. In: Olsson, I, editor. Radiocarbon Variations and Absolute Chronology. New York: Wiley. p 419–43.
Hendy, CH. 1971. The isotopic geochemistry of speleothems. I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35(8):801–24.
Huang, YM, Fairchild, IJ, Borsato, A, Frisia, S, Cassidy, NJ, McDermott, F, Hawkesworth, CJ. 2001. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology 175(3–4):429–48.
Larssen, T, Jiling, X, Vogt, RD, Seip, HM, Bohan, L, Dianwu, Z. 1998. Studies of soils, soil water and stream water at a small catchment near Guiyang, China. Water, Air, and Soil Pollution 101(1–4):137–62.
McDermott, F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23(7–8):901–18.
McDermott, F, Frisia, S, Huang, Y, Longinelli, A, Spiro, B, Heaton, THE, Hawkesworth, CJ, Borsato, A, Keppens, E, Fairchild, IJ, van der Borg, K, Verheyden, S, Selmo, EM. 1999. Holocene climate variability in Europe: evidence from δ18O, textural and extension-rate variations in three speleothems. Quaternary Science Reviews 18(8–9):1021–38.
Merkli, C, Sartori, G, Mirabella, A, Egli, M, Mancabelli, A, Plötze, M. 2009. The soils in the Brenta region: chemical and mineralogical characteristics and their relation to landscape evolution. Studi Tridentino di Scienze Naturali Acta Geologica 22:722.
Miorandi, R, Borsato, A, Frisia, S, Fairchild, IJ, Richter, D. 2010. Epikarst hydrology and implications for stalagmite capture of climate changes at Grotta di Ernesto (NE Italy): results from long-term monitoring. Hydrological Processes 24(21):3101–14.
Mook, WG, de Vries, JJ. 2000. Environmental Isotopes in the Hydrological Cycle Principles and Applications -Volume I: Introduction - Theory, Methods, Review. Vienna: IAEA.
Nielsen, AE, Toft, JM. 1984. Electrolyte crystal growth kinetics. Journal of Crystal Growth 67(2):278–88.
Plummer, LN, Parkhurst, DL, Kosiur, DR. 1975. MIX2, a Computer Program for Modelling Chemical Reactions in Natural Waters. US Geological Survey, Water Resources Investigations Report 61. 75 p.
Salièges, JF, Fontes, JC. 1984. Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35(1):5562.
Salomons, W, Mook, WG. 1986. Isotope geochemistry of carbonates in the weathering zone. In: Fritz, P, Fontes, JC, editors. Handbook of Isotope Geochemistry, 1 The Terrestrial Environment. Amsterdam: Elsevier. p 239–70.
Schlesinger, WH. 1977. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics 8:5181.
Spötl, C. 2004. A simple method of soil gas stable carbon isotope analysis. Rapid Communications in Mass Spectrometry 18(11):1239–42.
Spötl, C. 2005. A robust and fast method of sampling and analysis of δ13C of dissolved inorganic carbon in ground waters. Isotopes in Environmental and Health Studies 41(3):217–21.
Spötl, C, Fairchild, IJ, Tooth, AF. 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta 69(10):2451–68.
Steinmann, K, Siegwolf, RTW, Saurer, M, Körner, C. 2004. Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141(3):489501.
Tegen, I, Dörr, H. 1996. 14C measurements of soil organic matter, soil CO2 and dissolved organic carbon. Radiocarbon 38(2):247–51.
Thornthwaite, CW. 1948. An approach toward a rational classification of climate. Geographical Review 38(1):5594.
Trumbore, SE. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.
Wendt, I, Stahl, W, Geyh, MA, Fauth, F. 1967. Model experiments for 14C water-age determinations. In: Isotopes in Hydrology, Proceedings of the IAEA. p 321–37.
Wigley, TML. 1975. Carbon-14 dating of groundwater from closed and open systems. Water Resources Research 11(2):324–8.

The Influences of Hydrology on the Radiogenic and Stable Carbon Isotope Composition of Cave Drip Water, Grotta di Ernesto (Italy)

  • J Fohlmeister (a1), A Schröder-Ritzrau (a1), C Spötl (a2), S Frisia (a3), R Miorandi (a4), B Kromer (a1) and A Mangini (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed