Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T09:35:02.941Z Has data issue: false hasContentIssue false

Historic Lime-Mortar 14C Dating of Santa María La Real (Zarautz, Northern Spain): Extraction of Suitable Grain Size for Reliable 14C Dating

Published online by Cambridge University Press:  18 July 2016

Luis Angel Ortega*
Affiliation:
Geochronology and Isotope Geochemistry Unit, Mineralogy and Petrology Department, Science and Technology Faculty, The University of the Basque Country, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
Maria Cruz Zuluaga
Affiliation:
Mineralogy and Petrology Department, Science and Technology Faculty, The University of the Basque Country, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
Ainhoa Alonso-Olazabal
Affiliation:
Mineralogy and Petrology Department, Science and Technology Faculty, The University of the Basque Country, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
Xabier Murelaga
Affiliation:
Stratigraphy and Palaeontology Department, Science and Technology Faculty, The University of the Basque Country, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
Maite Insausti
Affiliation:
Inorganic Chemistry Department, Science and Technology Faculty, The University of the Basque Country, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain
Alex Ibañez-Etxeberria
Affiliation:
Social Sciences Department, Teacher Training School, The University of the Basque Country, UPV/EHU, Plaza Oñati n° 3, 20018 San Sebastian, Spain
*
Corresponding author. Email: luis.ortega@ehu.es.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes a method for effective separation of the pure binder fraction of lime mortars for reliable radiocarbon dating. The methodology allows removal of the detrital carbonate fraction and the unburnt limestone particles, obtaining particles of under 1 μm. The extracted fraction ensured that all carbonate has been generated by slaked lime carbonation. Consequently, the measured carbon corresponds to atmospheric carbon. The proposed method allows to obtain pure datable binder, simplifying considerably the performance of radiometric measurements because dating other grain-size fraction is unnecessary. In order to prove the effectiveness of binder refining, the extraction method has been applied to 5 lime mortars of different archaeological periods from the perimeter walls of Santa María la Real parish church (Zarautz, northern Spain).

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Al-Bashaireh, K, Hodgins, GWL. 2011. AMS 14C dating of organic inclusions of plaster and mortar from different structures at Petra-Jordan. Journal of Archaeological Science 38(3):485–91.Google Scholar
Ambers, J. 1987. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon-dates for lime mortars. Journal of Archaeological Science 14(6):569–76.Google Scholar
ASTM International. ASTM Standard C33. 2003. Specification for Concrete Aggregates. West Conshohocken: ASTM International.Google Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937–8.Google Scholar
Benea, V, Vandenberghe, D, Timar, A, Van den Haute, P, Cosma, C, Gligor, M, Florescu, C. 2007. Luminescence dating of Neolithic ceramics from Lumea Noua, Romania. Geochronometria 28:916.Google Scholar
Berger, R. 1992. 14C dating mortar in Ireland. Radiocarbon 34(3):880–9.Google Scholar
Bowman, S. 1990. Radiocarbon Dating. Berkeley: University of California Press. 64 p.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Casadio, F, Chiari, G, Simon, S. 2005. Evaluation of binder/aggregate ratios in archaeological lime mortars with carbonate aggregate: a comparative assessment of chemical, mechanical and microscopic approaches. Archaeometry 47(4):671–89.Google Scholar
Ceberio, M. 2009. La cerámica común no torneada de época romana del yacimiento de Santa María la Real de Zarautz (País Vasco). Una aproximación a su caracterización tipológica. In: Ibáñez Etxeberria, Á, editor. Santa María la Real de Zarautz (País Vasco) Continuidad y Discontinuidad en la Ocupación de la Costa Vasca entre los Siglos V a. C. y XIV d. C. Donostia: Sociedad de Ciencias Aranzadi. p 176–90.Google Scholar
Cepeda Ocampo, JJ. 2009. Hallazgos romanos en Santa María la Real de Zarautz (País Vasco). La terra sigilata, las lucernas y monedas. In: Ibáñez Etxeberria, Á, editor. Santa María la Real de Zarautz (País Vasco) Continuidad y Discontinuidad en la Ocupación de la Costa Vasca entre los Siglos V a. C. y XIV d. C. Donostia: Sociedad de Ciencias Aranzadi. p 258–72.Google Scholar
Cimitan, LPR, Zaninetti, A. 1991. Studio delle tecniche di disgregazione per le indagini diagnostiche delle malte. Materiali e Strutture. Problemi di Conservazione 3:121–30.Google Scholar
Davis, JA, Kent, DB. 1990. Surface complexation modeling in aqueous geochemistry. In: Hochella, MF, White, AF, editors. Mineral-Water Interface Geochemistry. Chantilly: Mineralogical Society of America. p 177260.Google Scholar
El-Turki, A, Ball, RJ, Allen, GC. 2007. The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cement and Concrete Research 37(8):1233–40.CrossRefGoogle Scholar
Esteban Delgado, M. 2004. Tendencia en la creacción de asentamientos durantes los primeros siglos de la era en el espacio litoral guipuzcuano. Kobie 6(1):371–80.Google Scholar
Esteban Delgado, M, Martínez Salcedo, A, Ortega Cuesta, LA, Alonso-Olazabal, A, Izquierdo Marculeta, MT, Rechin, F, Zuluaga Ibargallartu, MC. 2012. Caracterización Tecnológica y Arqueológica de la Cerámica Común no Torneada de Época Romana en el País Vasco Peninsular y Aquitania Meridional: Producción, Difusión, Funcionalidad, Cronología. Donostia: Eusko Ikaskuntza.Google Scholar
Fernández Ochoa, C, Morillo Cerdán, Á. 1994. De Brigantium a Oiasso: Una Aproximación al Estudio de los Enclaves Maritimos Cantábricos en Época Romna. Madrid: Foro Arqucología Proyectos y Publicaciones. 249 p.Google Scholar
Folk, RL, Valastro, SJ. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):195201.Google Scholar
Folk, RL, Valastro, S. 1979. Dating of lime mortar by 14C. In: Berger, R, Suess, HE, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. Berkeley: University of California Press. p 721–30.Google Scholar
Frumkin, A, Shimron, A, Rosenbaum, J. 2003. Radiometric dating of the Siloam Tunnel, Jerusalem. Nature 425(6954):169–71.Google Scholar
Genestar, C, Pons, C. 2003. Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterisation. Journal of Cultural Heritage 4(4):291–8.Google Scholar
Goedicke, C. 2003. Dating historical calcite mortar by blue OSL: results from known age samples. Radiation Measurements 37(4–5):409–15.Google Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestone in 14C dating of mortar. Radiocarbon 51(3):987–93.Google Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91(2):130–7.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997a. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123(1–4):487–95.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N, Sveinbjörnsdóttir, Á. 1997b. AMS 14C dating of lime mortar. In: Edgren, T, editor. Proceedings of the VII Nordic Conference on the Application of Scientific Methods in Archaeology. p 214–5.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the Medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Hiekkanen, M. 1998. Finland's Medieval Stone Churches and Their Dating – A Topical Problem. Helsinki: Suomen Museo. p 143–9.Google Scholar
Ibáñez Etxeberria, A. 2003. Entre Menosca e Ipuscua: Arqueología y Territorio en el Yacimiento de Santa María La Real de Zarautz (Gipuzkoa). Zarautz: Zarauzko Arte eta Historia Museoa. 51 p.Google Scholar
Ibañez Etxeberria, A. 2009. Santa María la Real de Zarautz (País Vasco): Continuidad y Discontinuidad en la Ocupación de la Costa Vasca entre los Siglos V a. C. y XIV d.C. Donostia: Sociedad de Ciencias Aranzadi. 431 p.Google Scholar
Ibáñez Etxeberria, A, Moraza, A. 2005. Evolución cronotipológica de las inhumaciones medievales en el Cantábrico Oriental: el caso de Santa María la Real de Zarautz (Gipuzkoa). Munibe, Suplemento 57:419–37.Google Scholar
Ibañez Etxeberria, A, Sarasola Etxegoien, N. 2009. El yacimiento arqueológieo de Santa María de Zarautz (País Vasco). In: Ibáñez Etxeberria, Á, editor. Santa María la Real de Zarautz (País Vasco): Continuidad y Discontinuidad en la Ocupación de la Costa Vasca Entre los Siglos V A.c. Y Xiv D.c. Donostia: Sociedad de Ciencias Aranzadi. p 1284.Google Scholar
Kosednar-Legenstein, B, Dietzel, M, Leis, A, Stingl, K. 2008. Stable carbon and oxygen isotope investigation in historical lime mortar and plaster - results from field and experimental study. Applied Geochemistry 23(8):2425–37.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortar by carbon-14 method. Nature 201(492):742–3.Google Scholar
Laird, DA, Dowdy, RH. 1994. Preconcentration techniques in soil mineralogical analyses. In: Luxmoore, RJ, editor. Quantitative Methods in Soil Mineralogy. Madison: Soil Science Society of America. p 236–66.Google Scholar
Lanas, J, Bernal, JLP, Bello, MA, Galindo, JIA. 2004. Mechanical properties of natural hydraulic lime-based mortars. Cement and Concrete Research 34(12):2191–201.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):2038–45.Google Scholar
Moropoulou, A, Bakolas, A, Bisbikou, K. 2000. Investigation of the technology of historic mortars. Journal of Cultural Heritage 1(1):4558.Google Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109–15.Google Scholar
Nawrocka, DM, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement in the Golan Heights area, Israel. Radiocarbon 49(2):625–37.Google Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857–66.Google Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Insausti, M, Ibañez, A. 2008. Geochemical characterization of archaeological lime mortars: provenance inputs. Archaeometry 50(3):387408.Google Scholar
Rech, JA. 2004. New uses for old laboratory techniques. Near Eastern Archaeology 67(4):212–9.Google Scholar
Rech, J A, Fischer, AA, Edwards, DR, Jull, AJT. 2003. Direct dating of plaster and mortar using AMS radiocarbon: a pilot project from Khirbet Qana, Israel. Antiquity 77(295):155–64.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Salama, AIA, Wilson, AD. 2000. Mechanical techniques: particle size separation. In: Wilson, AD, editor. Encyclopedia of Separation Science. Oxford: Academic Press. p 3277–89.Google Scholar
Schmid, SG. 2001. The International Wadi Farasa Project IWF, preliminary report on the 1999 season. The Annual of the Department of Antiquities of Jordan 45:343–57.Google Scholar
Seinfeld, JH, Pandis, SN. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: Wiley. 1203 p.Google Scholar
Sickels, LB. 1981. Organics vs. synthetics: their use as additives in mortars. In: Proceedings of the ICCROM Symposium on Mortars. Rome: ICCROM. p 2553.Google Scholar
Smalley, IJ, Kumar, R, O'Hara Dhand, K, Jefferson, IF, Evans, RD. 2005. The formation of silt material for terrestrial sediments: particularly loess and dust. Sedimentary Geology 179(3–4):321–8.Google Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43(2A):271–3.Google Scholar
Soukup, DA, Buck, BJ, Harris, W. 2008. Preparing soils for mineralogical analyses. In: Ulery, AL, Drees, LR, editors. Methods of Soil Analysis. Part 5—Mineralogical Methods. Madison: Soil Science Society of America. p 1231.Google Scholar
Stefanidou, M, Papayianni, I. 2005. The role of aggregates on the structure and properties of lime mortars. Cement and Concrete Composites 27(9–10):914–9.Google Scholar
Stokes, GG. 1851. On the effect of the lateral friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9:8108.Google Scholar
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. In: Chatters, RM, Olson, CA, editors. Proceedings of the 6th International 14C Conference. Washington, DC: Clearinghouse for Federal Scientific and Technical Information. p 338–43.Google Scholar
Tubbs, LE, Kinder, TN. 1990. The use of AMS for the dating of lime mortars. Nuclear Instruments and Methods in Physics Research B 52(3–4):438–41.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1983. Radiocarbon dating of old mortars. In: Mook, WG, Waterbolk, HT, editors. 14C and Archaeology, Proceedings. PACT 8:337–43.Google Scholar
Van Strydonck, M, Dupas, M, Dauchotdehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702–10.CrossRefGoogle Scholar
Van Strydonck, MJY, Van der Borg, K, De Jong, AFM, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 34(3):873–9.Google Scholar
Warkentin, BP, Maeda, T. 1980. Physical and mechanical characteristics of Andisols. In: Theng, BKG, editor. Soils with Variable Charge. Lower Hutt: New Zealand Society of Soil Science. p 281302.Google Scholar
Wilson, R, Spengler, JD. 1996. Particles in Our Air: Concentrations and Health Effects. Cambridge: Harvard University Press. 259 p.Google Scholar
Wintle, AG. 2008. Fifty years of luminescence dating. Archaeometry 50(2):276312.Google Scholar
Wright, JS. 1995. Glacial comminution of quartz sand grains and the production of loessic silt: a simulation study. Quaternary Science Reviews 14(7–8):669–80.Google Scholar
Wright, J, Smith, B, Whalley, B. 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: laboratory simulations. Geomorphology 23(1):1534.Google Scholar
Wyrwa, AM, Goslar, T, Czernik, J. 2009. AMS 14C dating of Romanesque rotunda and stone buildings of a Medieval monastery in Łekno, Poland. Radiocarbon 51(2):471–80.Google Scholar