Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:18:33.228Z Has data issue: false hasContentIssue false

FOSSIL FUEL ENVIRONMENTAL CONTAMINATION: A STRATEGY USING RADIOCARBON, N-ALKANES, AND ALGAE

Published online by Cambridge University Press:  09 June 2021

Túlio César Aguiar Silva
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Carla Carvalho*
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Bruno Libardoni
Affiliation:
Department of Science and Innovation – Infinito Mare, São Paulo, Brazil
Kita Macario
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil
Felippe Braga de Lima
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Mariana Cruz Pimenta
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil
Maria Isabela Nascimento de Oliveira
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Marcelo Corrêa Bernardes
Affiliation:
Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Gabriela da Silva Marques
Affiliation:
Programa de Pós-Graduação em Geoquímica – UFF, Niteroi, Rio de Janeiro, Brazil
Fernanda Pinto
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil
Rosa de Souza
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Universidade Federal Fluminense, Geochemistry Department, Niteroi, Rio de Janeiro, Brazil
Diana Negrão Cavalcanti
Affiliation:
Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros – UFF, Niteroi, Rio de Janeiro, Brazil
*
*Corresponding author. Email: carlac@id.uff.br.

Abstract

Fossil fuels are of utmost importance to the world we live in today. However, their use can cause major impacts on the environment, especially on water resources. In this regard, algae have been intensively used as a strategy for remediation and monitoring of environmental pollution due to its efficient absorption of contaminants. In this work, samples of seaweed collected in Niterói/RJ—contaminated with kerosene and diesel—were analyzed by radiocarbon (14C) accelerator mass spectrometry (AMS) and by n-alkane quantification with gas chromatography to evaluate bioaccumulation in function of the dosage of contaminants. The biogenic content measured by radiocarbon analysis resulted in 95.6% for algae contaminated with 10 mL of kerosene and 67.6% for algae contaminated with 10 mL of diesel. The maximum intensity of n-C17 n-alkane in algae with 5 mL, 10 mL, and 15 mL of diesel was 768.2, 1878.1, and 5699.2 ng.g-1, respectively. While the maximum concentration of n-C27 in algae with 5 mL, 10 mL and 15 mL of kerosene was 3.3, 35.9, and 150.3 ng.g-1. We concluded that, for both contaminants, their incorporation into algae increases as the contamination dosage increases, making this methodology an effective technique for monitoring and remediation of urban aquatic ecosystems.

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Allan, J, Douglas, AG. 1977. Variations in the content and distribution of n-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank Geochimica et Cosmochimica Acta 41: 12231230.CrossRefGoogle Scholar
Amador, ES. 1980. Assoreamento da Baía de Guanabara—taxas de sedimentação. Anais da Academia Brasileira de Ciências 52(4):723742.Google Scholar
ASTM International. 2010. Method D 6866-10: Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. West Conshohocken (PA): ASTM International.Google Scholar
Brasil, BSAF, Garcia, LC. 2016. Microalgas: alternativas promissoras para a indústria. Agroenergia em Revista 10:611.Google Scholar
Carreira, RS, Ribeiro, PV, Silva, CEM, Farias, CO. 2009. Hidrocarbonetos e esteróis como indicadores de fontes e destino de matéria orgânica em sedimentos da baía de Sepetiba, Rio de Janeiro. Química Nova 32(7):18051811.CrossRefGoogle Scholar
Celino, JJ, Veiga, IG, Triguis, JA, Queiroz, AFS. 2008. Fonte e distribuição de hidrocarbonetos do petróleo nos sedimentos da Baía de Todos os Santos, Bahia. Braz. J. Aquat. Sci. Technol. 12(1):3138.31 CrossRefGoogle Scholar
Hamacher, C. 1996. Determinação de hidrocarbonetos em amostras de água e sedimento da Baía de Guanabara [dissertation]. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro.Google Scholar
Han, SQ, Zhang, ZH, Yan, SH. 2000. Present situation and developmental trend of wastewater treatment and eutrophication waters purification with alga technology. Agro Environmental Development 63(1):1316.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, et al. 2013. The Brazilian AMS radiocarbon laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2–3):325330.CrossRefGoogle Scholar
McIlroy, W, Smith, RW, McGuffin, VL. 2018. Temperature kinetic models to predict evaporation of petroleum distillates for fire debris applications. Separations 5(4):47. doi: 10.3390/separations5040047.CrossRefGoogle Scholar
NRC-National Research Council. 1985. Nutrient requirements of sheep. National Academy Press 6.Google Scholar
NRC-National Research Council. 2003. Oil in the sea III: Inputs, fates and effects. National Academy Press.Google Scholar
Nishigima, FN, Weber, RR, Bícego, MC. 2001. Aliphatic and aromatic hydrocarbons in sediments of Santos and Cananéia, SP, Brazil. Marine Pollution Bulletin 42(11):10641072.CrossRefGoogle Scholar
Olguin, EJ. 2003. Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology Advance 22:8191.CrossRefGoogle ScholarPubMed
Pendoley, K. 1992. Hydrocarbons in Rowley Shelf (Western Australia) oysters and sediments. Marine Pollution Bulletin 24:210215.CrossRefGoogle Scholar
Peters, KE, Moldowan, JM. 1993. The biomarkerguide: interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs (NJ): Prentice Hall. 362 p.Google Scholar
Ptacek, C, Price, W, Smith, JL, Logsdon, M, McCandless, R. 2004. Land-use practices and changes—mining and petroleum production. In Threats to water availability in Canada. NWRI Scientific Assessment Report Series (3):67–75.Google Scholar
Quarta, G, Calcagnile, L, Giffoni, M, Braione, E, D’Elia, M. 2013. Determination of the biobased content in plastics by radiocarbon. Radiocarbon 55(2–3):18341844.CrossRefGoogle Scholar
Readman, JW, Fillmann, G, Tolosa, I, Bartocci, J, Villeneuve, JP, Cattini, C, Mee, LD. 2002. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin 44:4862.CrossRefGoogle ScholarPubMed
Staber, W, Flamme, S, Feltner, J. 2008. Methods for determining the biomass content of waste. Waste Management and Research 26:7887.CrossRefGoogle Scholar
UN-SGD. 2019. The sustainable development goals report. New York: United Nations. Available at https://unstats.un.org/sdgs/report/2019/.Google Scholar
Wakeham, SG, Canuel, EA. 1988. Organic geochemistry of particulate matter in the Eastern tropical North Pacific Ocean. Implications for particle dynamics. Journal of Marine Research 46(1):183213.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments & Methods in Physics Research Section B 259(1):320329.CrossRefGoogle Scholar