Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T04:29:55.227Z Has data issue: false hasContentIssue false

Dating of the Cultural Layers from Vilnius Lower Castle, East Lithuania: Implications for Chronological Attribution and Environmental History

Published online by Cambridge University Press:  18 July 2016

J Mažeika*
Affiliation:
Institute of Geology and Geography, T. Ševčenkos Str. 13, LT-03223 Vilnius, Lithuania
P Blaževičius
Affiliation:
Institute of History and Archaeology of the Baltic Sea Region, University of Klaipėda, Tilžės Str. 13, LT–91251 Klaipėda, Lithuania
M Stančikaitė
Affiliation:
Institute of Geology and Geography, T. Ševčenkos Str. 13, LT-03223 Vilnius, Lithuania
D Kisielienė
Affiliation:
Institute of Geology and Geography, T. Ševčenkos Str. 13, LT-03223 Vilnius, Lithuania
*
Corresponding author. Email: mazeika@geo.lt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Complex interdisciplinary studies carried out in the territory of the Vilnius Lower Castle, E Lithuania, were used to construct a chronological framework based on radiocarbon data and archaeological information. Bulk samples (wood and sediment) were collected from an approximately 3-m core that crossed cultural layers and underlying strata. 14C dates indicate that the underlying bed possibly formed during the 6th century AD, although no archaeological finds were discovered there. Paleobotanical (pollen and plant macrofossil) investigations reveal evidence of agriculture that points to the existence of a permanent settlement in the area at that time. The chronological data indicates a sedimentation hiatus before the onset of the deposition of the cultural layer in the studied area. The 14C dates showed that the formation of the cultural bed began during the late 13th–early 14th centuries AD, that is, earlier than expected according to the archaeological record. The ongoing deposition of the cultural beds continued throughout the middle to latter half of the 14th century AD as revealed by the archaeological records and confirmed by well-correlated 14C results. After some decline in human activity in the middle of the 14th century AD, a subsequent ongoing development of the open landscape, along with intensive agriculture, points to an increase in human activity during the second half of the 14th century AD. The first half of the 15th century AD was marked by intensive exploitation of the territory, indicating a period of economic and cultural prosperity. The chronological framework indicates that the investigated cultural beds continued forming until the first half of the 16th century AD.

Type
Radiocarbon, Archaeology, and Landscape Change
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Ammann, B, Lotter, AF. 1989. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18(2):109–26.Google Scholar
Arslanov, KhA. 1985. Radiocarbon: Geochemistry and Geochronology. Leningrad. In Russian.Google Scholar
Behre, KE, Jacomet, S. 1991. The ecological interpretation of archaeobotanical data. In: van Zeist, W, Wasylikowa, K, Behre, KE, editors. Progress in Old World Palaeoethnobotany. Rotterdam: Balkema. p 81108.Google Scholar
Bowman, S. 1995. Radiocarbon Dating. London: British Museum.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Bumblauskas, A. 2005. Senosios Lietuvos istorija 1009–1795 [History of Ancient Lithuania 1009–1795]. Vilnius: R. Paknio leidykla.Google Scholar
Butrimas, A. 1992. Spigino Mezolito kapai (Mesolithic graves on Spiginas Island). Lietuvos archeologija 8:410. In Lithuanian.Google Scholar
Erdtman, G. 1936. New methods in pollen analysis. Svensk Botanisk Tidskrift 30:154–64.Google Scholar
Gaigalas, A. 1999. Geological foundation and geomorphological conditions of the Lower Castle of Vilnius. In: Urbanavičius, V, editor. Vilniaus Žemutinės pilies rmai (1994–1995 metų tyrimai) Vilnius: Leidybos centras. p 320–1.Google Scholar
Grichiuk, VP. 1940. Processing of deposits poor in the organic material for pollen analysis. In: Grichiuk, VP. Problems of the Physical Geography. Moscow: Nauka. p 4068. In Russian.Google Scholar
Grigas, A. 1986. Lietuvos augalu vaisiai ir sėklos [Fruits and seeds of Lithuanian plants]. Vilnius: Mokslas.Google Scholar
Grimm, EC. 1992. TILIA and TILIA-GRAPH: PC spreadsheet and graphics program. In: 8th International Palynological Congress. Program and Abstracts. Aix-en-Provence, France.Google Scholar
Gudzinskas, Z. 1999. Lietuvos induočiai augalai [Vascular Plants of Lithuania]. Vilnius: Institute of Botany.Google Scholar
Guobytė, R. 2002. Lithuanian surface: geology, geomorphology and deglaciation [abstract of PhD dissertation]. Vilnius. 31 p.Google Scholar
Gupta, SH, Polach, HA. 1985. Radiocarbon Practices at ANU, Handbook. Canberra: Australian National University.Google Scholar
Jacquat, Ch. 1988. Hauterive-Champréveyres, 1. Les plantes de l'âge du Bronze. Catalogue des fruits et graines. Archéologie neuchâteloise 7. Saint-Blaise: Editions du Ruau.Google Scholar
Kitkauskas, N. 1989. Vilniaus Pilys. Statyba ir architektra [Vilnius Castle. Construction and Architecture]. Vilnius: Mokslas.Google Scholar
Kitkauskas, N. 2001. Vilniaus pilių architektros raida. Lietuvos pilių archeologija. [Development of the architecture of Vilnius Castles. Archaeology of Lithuanian Castles]. Vilnius: Klaipėda. p 153–72.Google Scholar
Kovaliukh, NN, Skripkin, VV. 1994. An universal technology for oxidation of carbon-containing materials for radiocarbon dating. In: Abstracts and Papers of Conference on Geochronology and Dendrochronology of Old Town's and Radiocarbon Dating of Archaeological Findings. Vilnius, Lithuania, 31 October–4 November. Vilnius: Vilnius University Press. p 3742.Google Scholar
Kuncevičius, A. 2005. Lietuvos viduramžių archeologija [Lithuanian Medieval Archaeology]. Vilnius: Versus aureus.Google Scholar
Latałowa, M. 1999. Palaeoecological reconstruction of the environmental conditions and economy in the early medieval Wolin—against a background of the Holocene history of the landscape. Acta Palaeobotanica 39(2):183271.Google Scholar
Latałowa, M, Badura, M, Jarosińska, J. 2003. Archaeobotanical samples from non-specific urban contexts as a tool for reconstructing environmental conditions (examples from Elblag and Kołobrzeg, northern Poland). Vegetation History Archaeobotany 12:93104.Google Scholar
Moore, PD, Webb, JA, Collinson, ME. 1991. Pollen Analysis. Oxford: Blackwell.Google Scholar
Pazdur, MF, Awsiuk, R, Goslar, T, Pazdur, A. 1994. Chronologia radiowęglowa początków osadnictwa w Wolinie i zeglugi u ujścia Odry [Radiocarbon chronology of the Wolin settlement and navigation at the mouth of Odra River]. Geochronometria 9:127–95. In Polish.Google Scholar
Pukienė, R, Ožalas, E. 2007. Medieval oak chronology from the Vilnius Lower Castle. Dendrochronologia 24:137–43.CrossRefGoogle Scholar
Pukienė, R. 2007. Mediniai XIV a. kelio grindiniai Vilniaus Žemutinėje Pilyje. Dendrochronologinė analizė ir datavimas [Wooden road pavements of the 14th century A.D. in the Vilnius Lower Castle. Dendrochronological analysis and dating]. In: Glemža, E, editor. Vilniaus Žemutinė Pilis XIV a.-XIX a. pradžioje. Vilnius: Lietuvos Pilys. p 182–94.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Rimantienė, R. 2005. Die Steinzeit Fischer an der Ostseelagune in Litauen. Vilnius: Lietuvos Nacionalinis Muziejus. In German with English summary.Google Scholar
Stančikaitė, M, Kisielienė, D, Mažeika, J, Blaževičius, P. 2008. Environmental conditions and human interference during the 6th and 13th–15th centuries A.D. at Vilnius Lower Castle, east Lithuania. Vegetation History and Archaeobotany 17(1):239–50.Google Scholar
Steponavičienė, D. 2007. The Luxury of Vilnius Court of Lithuanian Grand Duke in 13th-Early 16th Century. Vilnius: Versus Aureus.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Tautavičius, A, Urbanavičius, V. 1995. Archeologiniai tyrimai [Archeological investigations]. In: Tautavičius, A, editor. Vilniaus Žemutinės pilies rmai (1990–1993 metų tyrimai). Vilnius: Leidybos centras. p 112–32.Google Scholar
Urbanavičius, V. 2003. Vilniaus Žlemutinės pilies rmai, 1996–1998 metų tyrimai [The Lower Castle of the Vilnius Palace, Investigations of 1996–1998]. Vilnius: Sapnų sala.Google Scholar
Veski, S, Heinsalu, A, Klassen, V, Kriiska, A, Lõugas, L, Poska, A, Saluäär, U. 2005. Early Holocene coastal settlements and palaeoenvironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia. Quaternary International 130(1):7585.Google Scholar
Zagorska, I. 2006. Radiocarbon chronology of the Zvejnieki burials. In: Larsson, L, Zagorska, I, editors. Back to the origin. New research in the Mesolithic-Neolithic Zvejnieki cemetery and environment, northern Latvia. Acta Archaeologica Lundensia 8(52):91115.Google Scholar