Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 0.725 Render date: 2021-04-15T08:45:12.572Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Hydrological Changes After the Last Ice Retreat in Northern Poland Using Radiocarbon Dating

Published online by Cambridge University Press:  09 February 2016

Danuta J Michczyńska
Affiliation:
GADAM Centre of Excellence, Institute of Physics - CSE, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland
Leszek Starkel
Affiliation:
Institute of Geography and Spatial Organization, Department of Geomorphology and Hydrology of Mountains and Uplands PAS, św. Jana 22, 31-018 Kraków, Poland
Dorota Nalepka
Affiliation:
W. Szafer Institute of Botany PAS, Lubicz 46, 31-512 Kraków, Poland
Anna Pazdur
Affiliation:
GADAM Centre of Excellence, Institute of Physics - CSE, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland
Corresponding

Abstract

A simplified model of hydrological changes during the Late Glacial and Holocene is presented for the northern Polish regions that were ice covered during the Last Glacial. This reconstruction is based on a group of 197 radiocarbon dates from about 120 localities reflecting the sequence of alternating lake transgressions and regressions. The earliest transgressions were related to dead-ice melting (sometimes in 2–3 phases), while the later ones started during more humid phases. However, these were usually followed by regressions, which may have been connected with the formation of new drainage systems and with the overgrowing of shallow lakes by peat bogs.

Type
Paleoclimatology and Paleohydrology
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below.

References

Apolinarska, K, Woszczyk, M, Obremska, M. 2012. Late Weichselian and Holocene palaeoenvironmental changes in northern Poland based on the Lake Skrzynka record. Boreas 41(2):292307.CrossRefGoogle Scholar
Birks, HJB. 1986. Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund, BE, editor. Handbook of Holocene Palaeoecology and Palaeohydrology. New York: John Wiley & Sons.Google Scholar
Błaszkiewicz, M. 1998. Dolina Wierzycy jej geneza oraz rozwój w późnym plejstocenie oraz wczesnym holocenie. Dokumentacja Geograficzna 10:116. In Polish.Google Scholar
Błaszkiewicz, M. 2005. Pónoglacjalna i wczesnoholo ceńska ewolucja obnień jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza) (Late Glacial and early Holocene evolution of the lake basin in the Kociewskie Lakeland [Eastern part of the Pomeranian Lakeland]). Prace Geograficzne IG i PZ PAN nr 201. 192 p. In Polish with English summary.Google Scholar
Błaszkiewicz, M. 2011. Timing of the final disappearance of permafrost in the central European low land, as reconstructed from the evolution of lakes in N Poland. Geological Quarterly 55(4):361–74.Google Scholar
Borówko, K. 1990. Late Vistulian and Holocene denudation magnitude in morainic plateaux: case studies in the zone of maximum extend of the last ice sheet. Quaternary Studies in Poland 9:531.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Florek, W. 1991. Postglacjalny rozwój dolin rzek środkowej części północnego skłonu Pomorza, WSP Słupsk. 238 p. In Polish.Google Scholar
Florek, W, Alexandrowicz, SW, Pazdur, A. 1999. Zmiany poziomu wody w jeziorze Jasień na tle ewolucji środowiska w późnym vistulianie i holocenie. In: Pazdur, A, Bluszcz, A, Stankowski, W, Starkel, L, editors. Geochronologia Górnego Czwartorzdu Polski. Wroclaw: J. Wojewoda. p 199206. In Polish.Google Scholar
Gałka, M, Sznel, M. 2013. Late Glacial and Early Holocene development of lakes in northeastern Poland in view of plant macrofossil analyses. Quaternary International 292:124–35.CrossRefGoogle Scholar
Geyh, MA. 1980. Holocene sea-level history: case study of the statistical evaluation of 14C dates. Radiocarbon 22(3):695704.CrossRefGoogle Scholar
Hoek, WZ, Bohncke, SJP. 2002. Climatic and environmental events over the Last Termination, as recorded in the Netherlands: a review. Netherlands Journal of Geosciences 81(1):123–37.CrossRefGoogle Scholar
Hoffmann, T, Lang, A, Dikau, R. 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews 27(21–22):2031–40.CrossRefGoogle Scholar
Iversen, J. 1958. The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. In: Hedberg, O, editor. Systematics of Today. Proceedings of a symposium held at the University of Uppsala in commemoration of the 250th anniversary of Carolus Linnaeus. Acta Universitatis Upsaliensis/Uppsala Universitets Årsskrift 6:210–5.Google Scholar
Kaiser, K, Lorenz, S, Germer, S, Juschus, O, Küster, M, Libra, J, Bens, O, Hüttl, RF. 2012. Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact – an overview. E&G Quaternary Science Journal 61(2): 103–32.Google Scholar
Kołaczek, P, Kupryjanowicz, M, Karpińska-Kołaczek, M, Szal, M, Winter, H, Danel, W, Pochocka-Szwarc, K, Stachowicz-Rybka, R. 2013. The Late Glacial and Holocene development of vegetation in the area of a fossil lake in the Skaliska Basin (north-eastern Poland) inferred from pollen analysis and radiocarbon dating. Acta Palaeobotanica 53(1):2352.CrossRefGoogle Scholar
Kotarba, A, Baumgart-Kotarba, M. 1997. Holocene debris flow activity in the light of lacustrine sediments studies in the High Tatra Mountains. Palaeoclimate Research 19:147–58.Google Scholar
Koutaniemi, Z, Rachocki, A. 1981. Palaeohydrology and landscape development in the middle course of the Radunia basin, North Poland. Fennia 159(2):335–42.Google Scholar
Kozarski, S. 1986. Early Vistulian permafrost occurrence in north-west Poland. Biuletyn Peryglacjalny 31:163–70.Google Scholar
Kozarski, S. 1993. Late Plenivistulian deglaciation and the expansion of the periglacial zone in NW Poland. Geologie en Mijnbouw 72:143–57.Google Scholar
Kupryjanowicz, M. 2007. Postglacial development of vegetation in the vicinity of the Wigry Lake. Geochronometria 27:5366.CrossRefGoogle Scholar
Lauterbach, S, Brauer, A, Andersen, N, Danielopol, DL, Dulski, P, Hüls, M, Milecka, K, Namiotko, T, Plessen, B, von Grafenstein, U. 2010. Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland. Boreas 40(1):5772.CrossRefGoogle Scholar
van Loon, AJ, Błaszkiewicz, M, Degórski, M. 2012. The role of permafrost in shaping the Late Glacial relief of northern Poland. Netherlands Journal of Geosciences 91(1/2):223–31.CrossRefGoogle Scholar
Macklin, MG, Benito, G, Gregory, KJ, Johnstone, E, Lewin, J, Michczyńska, DJ, Soja, R, Starkel, L, Thorndycraft, VR. 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66:145–54.CrossRefGoogle Scholar
Magny, M. 1993. Holocene fluctuation of lake levels in the French Jura and Sub-Alpine ranges, and their implications for past general circulation patterns. The Holocene 3:306–13.CrossRefGoogle Scholar
Margielewski, W. 2006. Records of the Late Glacial- Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quaternaria 76:149 p.Google Scholar
Michczyńska, DJ, Hajdas, I. 2010. Frequency distribution of 14C ages for chronostratigraphic reconstructions: Alaska region study case. Radiocarbon 52(3):1041–55.CrossRefGoogle Scholar
Michczyńska, DJ, Pazdur, A. 2004. A shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in Late Glacial and Holocene. Radiocarbon 46(2):733–44.CrossRefGoogle Scholar
Michczyńska, DJ, Michczyński, A, Pazdur, A. 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49(2):799806.CrossRefGoogle Scholar
Michczyński, A, Michczyńska, DJ. 2006. The effect of PDF peaks' height increase during calibration of radiocarbon date sets. Geochronometria 25:14.Google Scholar
Nalepka, D. 2005. Late Glacial and Holocene palaeoecological conditions and changes of vegetation cover under early Farming activity in the south Kujawy region (central Poland). Kraków: W. Szafer Institute of Botany. Acta Palaeobotanica. Supplement Nr. 6.Google Scholar
Niewiarowski, W, Noryśkiewicz, B, Piotrowski, W, Sinkiewicz, M. 1995. An outline of natural and anthropogenic changes of geographical environment in the Biskupin area during the last 7000 years. Quaternary Studies in Poland 13:7788.Google Scholar
Nowaczyk, B. 2008. Changes in natural environment in the vicinity of Osłonki (Kujawy, Central Poland) in the light of geological and geomorphological investigations. Folia Quaternaria 78:731.Google Scholar
Pawlikowski, M, Ralska-Jasiewiczowa, M, Schönborn, W, Stupnicka, E, Szeroczyńska, K. 1982. Woryty near Gietrzwałd, Olsztyn Lake District, NE Poland vegetational history and lake development during the last 12,000 years. Acta Palaeobotanica 22(1):85116.Google Scholar
Pazdur, A, Pazdur, MF, Szulc, J. 1988. Radiocarbon dating of Holocene calcareous tufa from south Poland. Radiocarbon 30(2):133–46.CrossRefGoogle Scholar
Pazdur, A, Pazdur, MF, Goslar, T, Wicik, B, Arnold, M. 1994. Radiocarbon chronology of Late Glacial and Holocene sedimentation and water level changes in the Gościąż Lake basin and its surroundings. Radio carbon 36(2):187202.Google Scholar
Pazdur, A, Pazdur, MF, Pawlyta, J, Górny, A, Olszewski, M. 1995. Paleoclimatic implications of radiocarbon dating of speleothems from the Cracow-Wieluń upland, southern Poland. Radiocarbon 37(2):103–10.CrossRefGoogle Scholar
Pazdur, A, Dobrowolski, R, Mohanti, M, Piotrowska, N, Srikanta, D. 2002a. Radiocarbon time scale for deposition of the holocene calcareous tufaceous sediments from Poland and India (Orissa). Geochronometria 21 : 8596.Google Scholar
Pazdur, A, Dobrowolski, R, Durakiewicz, T, Piotrowska, N, Mohanti, M, Sirkanta, D. 2002b. δ13C and δ18O time record and palaeoclimatic implications of the Holocene calcareous tufa from south-eastern Poland and Eastern India (Orissa). Geochronometria 21:97108.Google Scholar
Piotrowska, N, Szczepanek, M, Pazdur, A, Zajadacz, W. 2004. RoS – a new database system in the Gliwice Radiocarbon Laboratory. Geochronometria 23:51–7.Google Scholar
Ralska-Jasiewiczowa, M, editor. 1989. Environmental changes recorded in lakes and mires of Poland during the last 13,000 years. Acta Palaeobotanica 29:1120.Google Scholar
Ralska-Jasiewiczowa, M, Latałowa, M. 1996. Synthesis of palaeoecological events in Poland. In: Berglund, BE, Birks, HJB, Ralska-Jasiewiczowa, M, Wright, HE, editors. Palaeoecological Events During the Last 15,000 Years. Regional Syntheses of Palaeoecological Studies of Lakes and Mires. Chichester: John Wiley & Sons Ltd.Google Scholar
Ralska-Jasiewiczowa, M, Starkel, L. 1988. Record of the hydrological changes during the Holocene in the lake, mire and fluvial deposits of Poland. Folia Quaternaria 57:91127.Google Scholar
Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. 1998a. Lake Gościąż, Central Poland, a Monographic Study. Part I. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences. 340 p.Google Scholar
Ralska-Jasiewiczowa, M, van Geel, , Demske, D. 1998b. Holocene regional vegetation history recorded in the Lake Gościąż sediments. In: Ralska-Jasiewiczowa, , Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, Central Poland. A Monographic Study. Part I. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences. p 202–19.Google Scholar
Ralska-Jasiewiczowa, M, Latałowa, M, Wasylikowa, K, Tobolski, K, Madeyska, T, Wright, HE, Turner, C, editors. 2004. Late Glacial and Holocene History of Vegetation in Poland Based on Isopollen Maps. Kraków: W Szafer Institute of Botany, Polish Academy of Sciences. 444 p.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51(4): 1111–50.CrossRefGoogle Scholar
Starkel, L. 1977. Paleogeografia holocenu (Palaeogeography of the Holocene). Warsaw: PWN. 362 p. In Polish.Google Scholar
Starkel, L. 1983. The reflection of hydrological changes in the fluvial environment of the temperate zone during the last 15 000 years. In: Gregory, KJ, editor. Background to Palaeo-Hydrology. Chichester: John Wiley & Sons. p 213–35.Google Scholar
Starkel, L. 1991. Environmental changes at the Younger Dryas-Preboreal transition and during the early Holocene. The Holocene 1(3):234–42.CrossRefGoogle Scholar
Starkel, L. 1999. 8500-8000 yrs BP humid phase – global or regional? Science Reports of Tohoku University, 7th Series. Geography 49(2):105–33.Google Scholar
Starkel, L. 2002. Change in the frequency of extreme events as the indicator of climatic change in the Holocene (in fluvial systems). Quaternary International 91:2532.CrossRefGoogle Scholar
Starkel, L. 2003. Palaeohydrology of Central Europe (Chapter 7). Short-Term Hydrological Changes (Chapter 20). In: Gregory, KJ, Benito, G, editors. Palaeohydrology: Understanding Global Change. Chicester: John Wiley & Sons. p 87104, 337–56.Google Scholar
Starkel, L. 2008. Odrębność zapisu holoceńskich zmian klimatu w dolinie Niżu Polskiego (The diverse effects of Holocene climatic changes on the river valleys of the Polish Lowland). Botanical Guidebooks 30:169–82.Google Scholar
Starkel, L, Pazdur, A, Pazdur, MF, Wicik, B, Wickowski, K. 1996a. Lake level and groundwater level changes in the Lake Gościąż area, Poland - palaeoclimatic implications. The Holocene 6(2):213–24.CrossRefGoogle Scholar
Starkel, L, Kalicki, T, Krąpiec, M, Soja, R, Gębica, P, Czyowska, E. 1996b. Hydrological changes of valley floors in Upper Vistula Basin during the last 15 000 years. Geographical Studies (Special Issue) IGiPZ PAN, Warsaw 9:7128.Google Scholar
Starkel, L, Goslar, T, Ralska Jasiewiczowa, M, Demske, D, Różański, K, λącka, B, Pelisiak, A, Szeroczyńska, K, Wicik, B, Wickowski, K. 1998a. Discussion of the Holocene events recorded in the Lake Gościąż sediments. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, Central Poland, a Monographic Study. Part 1. Kraków: W Szafer Institute of Botany, Polish Academy of Sciences. p 239–51.Google Scholar
Starkel, L, Wicik, B, Wickowski, K. 1998b. Formation and evolution of the Na Jazach lakes in the Late Vistulian. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, Central Poland A Monographic Study, Part 1. p 117–9.Google Scholar
Starkel, L, Soja, R, Michczyńska, DJ. 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66:2433.CrossRefGoogle Scholar
Starkel, L, Michczyńska, DJ, Krąpiec, M, Margielewski, W, Nalepka, D, Pazdur, A. 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40:121.CrossRefGoogle Scholar
Surovell, TA, Finley, JB, Smith, GM, Brantingham, PJ, Kelly, R. 2009. Correcting temporal frequency distributions for taphonomic bias. Journal of Archaeological Science 36(8):1715–24.CrossRefGoogle Scholar
Szeroczyńska, K. 1998. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeography, Palaeoclimatology, Palaeoecology 140:335–45.CrossRefGoogle Scholar
Vandenberghe, J. 2006. Cryoturbation structures. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 2147–53.Google Scholar
Wacnik, A. 2009. Vegetation development in the Lake Miłkowskie area, north-eastern Poland, from the Plenivistulian to the late Holocene. Acta Palaeobotanica 49(2):287335.Google Scholar
Williams, A. 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39(3):578–89.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 24 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrological Changes After the Last Ice Retreat in Northern Poland Using Radiocarbon Dating
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hydrological Changes After the Last Ice Retreat in Northern Poland Using Radiocarbon Dating
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hydrological Changes After the Last Ice Retreat in Northern Poland Using Radiocarbon Dating
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *