Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T19:27:40.841Z Has data issue: false hasContentIssue false

Comparison of Two Bone-Preparation Methods for Radiocarbon Dating: Modified Longin and Ninhydrin

Published online by Cambridge University Press:  28 December 2017

J-P Dumoulin*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Messager
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
H Valladas
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
L Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
I Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
E Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
M Lebon
Affiliation:
UMR 7194 - Histoire Naturelle de l’Homme Préhistorique. Département de Préhistoire du CNRS, MNHN, UPVD, SU, Musée de l’Homme, 17 Place du Trocadéro, 75116 Paris, France
*
*Corresponding author. Email: dumoulin@lsce.ipsl.fr.

Abstract

In this paper, first results comparing modified Longin and ninhydrin collagen extraction methodologies are presented. The goal of this study is to investigate the bones of several species with different ages, preservation conditions, and collagen contents to determine the most suitable preparation method. Different types of samples are used such as VIRI samples, previously dated bones, and background samples. Each bone has undergone elemental analysis, infrared analysis, and 14C measurement. The results are presented and the advantages and disadvantages of each preparation method are discussed. In general, results obtained by the two methods are in accordance with the consensus value for 2σ uncertainty. For VIRI I and a mammoth bone, the ninhydrin preparation gives, respectively, 8450±70 BP and 14,870±60 BP whereas the modified Longin process gives 8365±45 BP and 14,750±100 BP in agreement with the expected values. From the experimental point of view, the modified Longin process is easier to implement than the ninhydrin protocol. From this approach, we can conclude that the modified Longin process could be preferred in most cases and particularly when the amount of bone is small and the sample is not too contaminated.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016.

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.Google Scholar
Beck, L, Cuif, J-P, Pichon, L, Vaubaillon, S, Dambricourt Malassé, A, Abel, RL. 2012. Checking collagen preservation in a bone fragment of the potentially Oldest Modern Indian by non-destructive studies. Nuclear Instruments and Methods in Physics Research B 273:203207.Google Scholar
Bocherens, H, Drucker, D, Billiou, D, Moussa, I. 2005. A new approach for assessing the preservation state of bone and collagen for isotopic analysis (radiocarbon dating, carbon and nitrogen stable isotopes). L’anthropologie 109:557567.Google Scholar
Brock, F, Bronk Ramsey, C, Higham, TFG. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.Google Scholar
Brock, F, Higham, T, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Dauphin, Y. 2015. Messages d’os: Archéométrie du squelette animal et humain. In: Balasse M, Brugal J-P, Dauphin Y, Geigl E-M, Oberlin C, Reiche I, editors. Edition des archives contemporaines, Chapter 2p 521.Google Scholar
Debenham, NC. 1998. Thermoluminescence dating of stalagmitic calcite from la grotte Scladina at Sclayn (Namur). In: Otte M, Patou-Mathis M, Bonjean D, editors. Recherches aux grottes de Sclayn Volume 2. Liège: L.Archéologie ERAUL. p 3943.Google Scholar
DeNiro, MJ. 1985. Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.CrossRefGoogle Scholar
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delqué-Količ, E, Hain, S, Massault, M, Moreau, C, et al. 2013. Development of a line for dissolved inorganic carbon extraction at lMC14 Artemis Laboratory in Saclay, France. Radiocarbon 55(2):10431049.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59(3):713726.Google Scholar
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bones by accelerator. Journal of Archaeological Science 11:165170.Google Scholar
Lebon, M, Reiche, I, Gallet, X, Bellot-Gurlet, L, Zazzo, A. 2016. Rapid quantification of bone collagen content by ATR-FTIR Spectroscopy. Radiocarbon 58(1):131145.CrossRefGoogle Scholar
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, JP, Moreau, C, Dillmann, P. 2015. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French GothicCathedrals. Journal of Archaeological Science 53(2015):190201.CrossRefGoogle Scholar
Lewis, SG, Maddy, D, Buckingham, C, Coope, GR, Field, MH, Keen, DH, Pike, AWG, Roe, DA, Scaife, RG, Scott, K. 2006. Pleistocene fluvial sediments, palaeontology and archaeology of the upper River Thames at Latton, Wiltshire, England. Journal of Quaternary Science Review 21(2):181205.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.Google Scholar
Marom, A, McCullagh, J, Higham, T, Hedges, R. 2013. Hydroxyproline dating: experiments on the 14C analysis of contaminated and low-collagen bones. Radiocarbon 55(2–3):698708.Google Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, et al. 2013. Research and development of the Artemis 14C AMS facility: status report. Radiocarbon 55(2–3):331337.CrossRefGoogle Scholar
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251:552554.CrossRefGoogle ScholarPubMed
Person, A, Bocherens, H, Mariotti, A, Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:135150.Google Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010. A report on phase 2 of the Fifth International. Radiocarbon Inter-comparison (VIRI). Radiocarbon 52(3):846858.Google Scholar
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409419.CrossRefGoogle Scholar
Ubelaker, DH, Parra, RC. 2011. Radiocarbon analysis of dental enamel and bone to evaluate date of birth and death: perspective from the southern hemisphere. Forensic Science International 208:103107.Google Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Sciences 26(6):687695.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.CrossRefGoogle Scholar
Wood, R, Bronk Ramsey, C, Higham, T. 2010. Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon 52(2):600611.CrossRefGoogle Scholar