Hostname: page-component-68945f75b7-z7ghp Total loading time: 0 Render date: 2024-08-06T06:58:20.723Z Has data issue: false hasContentIssue false

19 Years of Mortar Dating: Learning from Experience

Published online by Cambridge University Press:  09 February 2016

Åsa Ringbom*
Affiliation:
Department of Art History, Åbo Akademi University
Alf Lindroos
Affiliation:
Department of Geology and Mineralogy, Åbo Akademi University, Domkyrkotorget 1, FI-20500 Åbo, Finland
Jan Heinemeier
Affiliation:
Aarhus University, Denmark, The AMS 14C Dating Centre
Pia Sonck-Koota
Affiliation:
Department of Geology and Mineralogy, Åbo Akademi University, Domkyrkotorget 1, FI-20500 Åbo, Finland
*
Corresponding author. Email: aringbom@abo.fi.

Abstract

Since 1994, our team has gained extensive experience applying accelerator mass spectrometry (AMS) radiocarbon analysis for mortar dating, totaling over 465 samples and 1800+ measured CO2 fractions. Several samples have been analyzed repeatedly. The research covers both Medieval and Classical archaeology. We therefore believe our experience can be helpful when developing preparation procedures for different kinds of mortars in different areas and in varying chronologies. So far, the main areas of interest have been (a) the churches of the Åland Islands (in the archipelago between Finland and Sweden); (b) the churches in the Åboland Archipelago (SW Finland); (c) sites in the Iberian Peninsula including Torre de Palma (a Roman village in Portugal); and (d) Rome, Pompeii, and Herculaneum (Italy). Most of the analyses before 2000 were hydrolized in only two CO2 fractions per sample, and reliability criteria were defined on the basis of how well the ages of the two fractions agree with each other. These criteria have proved most helpful in determining the reliability of 14C mortar analyses. Different types of mortar have been investigated, including lime mortars made both from limestone and marble, pozzolana mortars, fire-damaged mortars, and mortars based on burnt shells. Most importantly, separate lime lumps sampled from these mortars have been analyzed sporadically and recently more systematically. The research also includes different types of hydrolysis applied in the pretreatment. In addition to using 85% phosphoric acid (H3PO4), the experimental research includes tests with smaller concentrations of phosphoric acid, and tests based on 2–3% hydrochloric acid (HCl) dissolutions. To characterize the dissolution process, results are presented as age profiles of 2–5 CO2 fractions. In our experience, pozzolana mortars have been difficult to date, and HCl dissolution should be used only in special cases and in complementary tests.

Type
Methodology: Generaland Bones
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Bashaireh, K. 2013. Plaster and mortar radiocarbon dating of Nabatean and Islamic structures, South Jordan. Archaeometry 55(2):329–54.Google Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937–8.CrossRefGoogle ScholarPubMed
Folk, RL, Valastro, S Jr. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):203–8.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortars. Nuclear Instruments and Methods in Physics Research B 123(1–4):487–95.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the Medieval churches of the Åland Islands, Finland. Radiocarbon 52(1): 171204.Google Scholar
Hodgins, G, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F. 2011. 14C dating of Roman mortars – preliminary tests using diluted hydrochloric acid injected in batches. In: Ringbom, Å, Hohlfelder, RL, editors. Sjöberg, P, Sonck-Koota, P, assistant editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum 128:209–13.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by carbon-14 method. Nature 201(4920):742.Google Scholar
Langley, MM, Maloney, SJ, Ringbom, Å, Heinemeier, J, Lindroos, A. 2011. A comparison of dating techniques at Torre de Palma, Portugal: mortars and ceramics. In: Ringbom, Å, Hohlfelder, RL, editors. Sjöberg, P, Sonck-Koota, P, assistant editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum 128:242–56.Google Scholar
Lapuente, MP, Turi, B, Blanc, P. 2000. Marbles from Roman Hispania: stable isotope and cathodoluminescence characterization. Applied Geochemistry 15(10):1469–93.Google Scholar
Lindroos, A. 2005. Carbonate phases in historical lime mortars and pozzolana concrete. Implications for AMS 14C dating [PhD thesis]. Turku: Åbo Akademi University.Google Scholar
Lindroos, A, Ringbom, Å, Heinemeier, J, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, M, Suksi, J. 2011a. Problems in radiocarbon dating of Roman pozzolana mortars. In: Ringbom, Å, Hohlfelder, RL, editors. Sjöberg, P, Sonck-Koota, P, assistant editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum 128:214–30.Google Scholar
Lindroos, A, Ringbom, Å, Kaisti, R, Heinemeier, J, Hodgins, G, Brock, F. 2011b. The oldest parts of Turku Cathedral 14C chronology of fire damaged mortars. In: Hansson, J, Ranta, H, editors. Archaeology and History of Churches in the Baltic Region. Stockholm: Vitterhetsakademien. p 108–21.Google Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. 14C dating of fire-damaged mortars from Medieval Finland. Radiocarbon 54(3–4):915–31.Google Scholar
Lindroos, A, Ranta, H, Heinemeier, J, Lill, J-O. 2014a. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar. Nuclear Instruments and Methods in Physics Research B. http://dx.doi.org/10.1016/j.nimb.2014.02.132.Google Scholar
Lindroos, A, Orsel, E, Heinemeier, J, Lill, J-O, Gunnelius, K. 2014b. 14C dating of Dutch mortars made from burned shell. Radiocarbon, in press.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Quiros Castillo, JA, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars. Methodolical aspects and field study application at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246–51.Google Scholar
Orsel, ED. 2012a. The Burcht of Leiden; the summit of a royal dream. In: Chateau Gaillard 25, Études de castellologie médiévale, L'origine du château médiéval, actes du colloque de Rindern, Allemagne (2010). Turnhout: Brepols. p 281–5.Google Scholar
Orsel, ED. 2012b. De Burcht in beweging. In: Aarts, B, Landewé, W, Olde Meierink, B, Vogelzang, F, editors. Ambitie in Steen. Leiden: Nederlandse Kastelenstichting. p 6779.Google Scholar
Pesce, GLA, Quarta, G, Calcagnile, L, D'Elia, M, Cavaciocchi, P, Lastrico, C, Guastella, R. 2009. Radiocarbon dating of lumps from aerial lime mortars and plasters: methodological issues and results from San Nicolò of Capodimonte Church (Camogli, Genoa, Italy). Radiocarbon 51(2):867–72.Google Scholar
Pesce, GLA, Ball, RJ, Quarta, G, Calcagnile, L. 2012. Identification, extraction, and preparation of reliable lime samples for 14C dating of plasters and mortars with the “pure lime lumps” technique. Radiocarbon 54(3–4):933–42.Google Scholar
Ranta, H, Lindroos, A. 2009. Murbruksdatering, Läckö slott, Lidköping. In: Lindberg, S, Menander, H, Thorén, H. Byggnadsarkeologisk undersökning på Läckö slott, Södra huvudborgslänngans södra fasad samt rum 27 och källare HI nordvästra tornet. RAÄ 69, Läckö Slott, Otterstad socken, Lidköpings kommun, Västra Götalands län. Nr. 424.876–2008, Riksantikvarieämbetet, Arkeologiska uppdragsverksamheten (UV), UV Öst Rapport 2009:44, Byggnadsarkeologisk förundersökning och undersökning.Google Scholar
Ranta, H, Hansson, J, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F, Hodgins, G. 2009. Om dateringen av Gotlands medeltida kyrkor. Hikuin 36:85100.Google Scholar
Ringbom, Å. 2003. Dolphins and mortar dating – Santa Costanza reconsidered. In: Ringbom, Å, Suominen-Kokkonen, R, editors. Songs of Ossian, Festschrift in Honour of Professor Bo Ossian Lindberg. Helsinki: Taidehistoriallisia Tutkimuksia/Konsthistoriska studier 27. p 2242.Google Scholar
Ringbom, Å. 2011. The Voice of the Åland Churches – New Light on Art, Architecture and History. Chapter 3, The Åland Churches Project and the Necessity of Interdisciplinary Research. Mariehamn: Ålands Museum. p 136–53.Google Scholar
Ringbom, Å, Remmer, C. 1995. Ålands Kyrkor. Volume 1. Hammarland och Eckerö. Mariehamn: Ålands landskapsstyrelse/Museibyrån. In Swedish with English summary.Google Scholar
Ringbom, Å, Remmer, C. 2000. Álands Kyrkor. Volume 2. Saltvik. Mariehamn: Ålands landskapsstyrelse/Museibyrån. In Swedish with English summary.Google Scholar
Ringbom, Å, Remmer, C. 2005. Ålands Kyrkor. Volume 3. Sund och Vårdö. Mariehamn: Ålands landskapsstyrelse/Museibyrån. In Swedish with English summary.Google Scholar
Ringbom, Å, Hale, J, Heinemeier, J, Lindroos, A, Brock, F. 2006. The use of mortar dating in archaeological studies of Classical and Medieval structures. In: Dunkeld, M, editor. Proceedings of the Second International Congress on Construction History 3:2613–33.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011a. Mortar dating and Roman pozzolana, results and interpretations. In: Ringbom, Å, Hohlfelder, RL, editors. Sjöberg, P, Sonck-Koota, P, assistant editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum 128:187208.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Gustavsson, K. 2011b. Dating stone churches in the Outer Åland Archipelago. In: Hansson, J, Ranta, H, editors. Archaeology and History of Churches in the Baltic Region. Visby: Gotland University. p 141–70.Google Scholar
Sjöberg, P. 2011. The Medieval churches of the Åboland archipelago. New perspectives through scientific dating [unpublished B-Litt thesis]. Åbo Akademi, Art History.Google Scholar
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. In: Chatters, RM, Olson, EA, editors. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Washington, DC: US Department of Commerce. p 338–41.Google Scholar
Tubbs, LE, Kinder, TN. 1990. The use of AMS for the dating of lime mortars. Nuclear Instruments and Methods in Physics Research B 52(3–4):438–41.Google Scholar
Van Strydonck, M, Dupas, M. 1991. The classification and dating of lime mortars by chemical analysis and radiocarbon dating: a review. In: Waldren, WH, Ensenyat, JA, Kennard, RC, editors. IInd Deya International Conference of Prehistory. Volume II. BAR International Series 574. Oxford: Archaeopress. p 543.Google Scholar
Van Strydonck, M, Van der Borg, JYK, de Jong, AFM, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 34(3):873–9.Google Scholar