Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T10:32:40.733Z Has data issue: false hasContentIssue false

14C Age Corrections in Antarctic Lake Sediments Inferred from Geochemistry

Published online by Cambridge University Press:  18 July 2016

Rolf Zale*
Affiliation:
Department of Geography, University of Umeå, S-901 87 Umeå, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sediment from Lake Boeckella, Antarctic Peninsula, is richer in Ca, Cd, Cu, P, Sr and Zn than that of six other lakes in the area. The elements originate from Adélie penguin (Pygoscelis adeliae) guano on the lake shores. Changing Cu and P concentrations in the lake sediment are used as a proxy for penguin influence on the lake sediment from ca. 5850 bp to present. A 14C dating model suggests that the 14C correction factor in the lake sediments depends on the penguin proxy, the apparent age of the penguin guano and the amount of particulate carbon originating from the carbon-bearing shales in the watershed. Glacial meltwater and dissolved carbonates do not contain enough “old” carbon to contribute significantly to the correction factor. Ages corrected with the 14C dating model agree with the depth vs. age curve based on independently 14C-dated tephra horizons. The reservoir effect has been constant since at least 5800 bp, implying long-term stability of the currents and water masses in the area. The existing chronology for Lake Boeckella has been recalculated. The period of glacial advance, previously thought to have culminated at 5000 bp, is now thought to have culminated at 4700 bp; deglaciation of the area is thought to have occurred at 6300 bp instead of 8680 bp.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Barsch, D. and Mäusbacher, R. 1986 New data on the relief development of the South Shetland Islands, Antarctica. Interdisciplinary Science Review 11(2): 211218.CrossRefGoogle Scholar
Bibby, J. S. 1966 The stratigraphy of part of the northeast Graham land and the James Ross Island group. British Antarctic Survey Scientific Reports 53: 37 p.Google Scholar
Birkenmajer, K. 1981 Raised marine features and glacial history in the vicinity of H. Arctowski station, King George Island (South Shetland Islands, West Antarctica). Bulletin de l'Académie Polonaise des Sciences. Série des Sciences de la Terre 29(2): 109117.Google Scholar
Björck, S., Hjort, Ch., Ingolfsson, O. and Skog, G. 1991 Radiocarbon dates from the Antarctic Peninsula region—problems and potentials. Quaternary Proceedings 1: 5565.Google Scholar
Björck, S., Nordström, K., Wasell, A. and Zale, R. 1989 Holocene environmental history around the Antarctic Peninsula based on lake sediment analyses. In Karlqvist, A., ed., Swedish Antarctic Research Programme 1988/89, A Cruise Report. Stockholm, Swedish Polar Research Secretariat: 8197.Google Scholar
Björck, S., Sandgren, P. and Zale, R. 1991 Late Holocene tephrochronology of the northern Antarctic Peninsula. Quaternary Research 36: 322328.CrossRefGoogle Scholar
British Antarctic Survey 1979 British Antarctic Territory, Geological Map, Series BAS 500 G, Sheet 2, Edition 1.Google Scholar
Bruland, K. W., Bertine, K., Koide, M. and Goldberg, E. 1974 History of metal pollution in Southern California Coastal zone. Environmental Science and Technology 8: 425432.Google Scholar
Culik, B. 1987 Fluoride excretion in Adélie penguins (Pygoscelis adeliae) and mallard ducks (Anas platyrhynchos). Comparative Biochemistry and Physiology 88A(2): 229233.Google Scholar
Dearing, J. A. 1986 Core correlation and total sediment influx. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester, John Wiley & Sons: 247270.Google Scholar
Druffel, E. M. 1981 Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters 8(1): 5962.Google Scholar
Håkanson, L. and Jansson, M. 1983 Principles of Lake Sedimentology. Berlin, Springer-Verlag: 316 p.Google Scholar
Hansson, L.-A., 1990 Interaction between periphytic and planktonic algae along a productivity gradient in Antarctic lakes. In Karlqvist, A., Swedish Antarctic Research Programme 1988/89, A Cruise Report. Stockholm, Swedish Polar Research Secretariat: 108112.Google Scholar
Hebert, D. 1980 Kohlenstoff-14-Datierung antarktischer Pinguinbrutstätten. Beiträge zur Vogelkunde 26(6): 335341.Google Scholar
Izaguirre, I., Mataloni, A., Vinocour, A. and Tell, G. 1993: Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarctic Science 5(2): 137141.CrossRefGoogle Scholar
Karlén, W., Hjort, Ch., Ingolfssson, O. and Zale, R. 1988 Holocene glacial history and climatic variation on the Antarctic Peninsula. In Fütterer, D. K., ed., Die Expedition Antarktis-VI mit FS “Polarstern” 1987/1988, Berichte zur Polarforschung 58. Bremerhaven, Alfred-Wegener-Institut für Polar- und Meeresforschung: 4041.Google Scholar
Kemp, A. L. W., Thomas, R. L., Dell, C. I. and Jaquet, J.-M. 1976 Cultural impact on the geochemistry of sediments in Lake Erie. Journal of the Fishery Research Board of Canada 33: 440462.Google Scholar
Mabin, M. C. G. 1986 14C ages for “heroic era” penguin and seal remains from Cape Evans, McMurdo Sound. New Zealand Antarctic Record 7 (2): 1920.Google Scholar
Olsson, I. U. 1986 Radiometric dating. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester, John Wiley & Sons: 273312.Google Scholar
Omoto, K. 1983 The problem and significance of radiocarbon geochronology in Antarctica. In Oliver, R. L., James, P. R. and Jago, J. B., eds., Antarctic Earth Science. Cambridge, Cambridge University Press: 450453.Google Scholar
Poisson, A. and Chen, C.-T. A. 1987 Why is there little anthropogenic CO2 in the Antarctic bottom water? Deep Sea Research 34(7): 12551275.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1985 Compilation of isotopic dates from Antarctica. Radiocarbon 27 (2A): 117304.Google Scholar
Stuiver, M., Pearson, G. W. and Braziunas, T. 1986 Radiocarbon age calibration of marine samples back to 9000 cal yr bp. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 9801021.Google Scholar
Wand, U. 1987 Kohlenstoff-14-Untersuchungen an Sturmvogelnistplätzen in der Antarktis. Beiträge zur Vogelkunde 33(3/4): 129140.Google Scholar
Watson, G. E. 1975 Birds of the Antarctic and Sub-Antarctic. Washington, American Geophysical Union: 350 p.Google Scholar
Whitehouse, I. E., Chinn, T. J. H., von Hofle, H. C. and McSaveney, M. J. 1987 Radiocarbon contaminated penguin bones from Terra Nova Bay, Antarctica. New Zealand Antarctic Record 8(3): 1123.Google Scholar
Zale, R. and Karlén, W. 1989 Lake sediment cores from the Antarctic peninsula and surrounding islands. Geografiska Annaler 71A(3–4): 211220.Google Scholar