Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:58:34.663Z Has data issue: false hasContentIssue false

14C Activity in Different Sections and Chemical Fractions of Oak Tree Rings, AD 1938–1981

Published online by Cambridge University Press:  18 July 2016

Ingrid U. Olsson
Affiliation:
C Laboratory, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden
Göran Possnert
Affiliation:
The Svedberg Laboratory, Uppsala University, Box 533, S-751 21 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 14C activity in rings from an oak tree grown in a suburb of Uppsala, Sweden has been studied for the period, AD 1938 to 1981. We compare the results with the atmospheric carbon dioxide records from Abisko, northern Sweden, where local or regional contamination from fossil-fuel combustion can be disregarded. We assess the influence from different chemical pretreatment procedures in use and compare HCl-NaOH-HCl treatment with cellulose extraction. We split each ring into two samples corresponding to early (spring) and late wood. A more refined partitioning has been applied to the years 1963 and 1964.

Type
III. Global 14C Production and Variation
Copyright
Copyright © The American Journal of Science 

References

Cain, W. F. 1978 Carbon-14, tree rings, and urban air pollution. Environmental International 1: 167171.CrossRefGoogle Scholar
Cain, W. F. 1979 14C in modern American trees. In Berger, R. and Suess, H. E., eds., Radiocarbon Dating. Proceedings of the 9th International 14C Conference. Berkeley, University of California Press: 495510.Google Scholar
Cain, W. F. and Suess, H. E. 1976 Carbon 14 in tree rings. Journal of Geophysical Research 81(21): 36883694.Google Scholar
Dai, K.-M. and Fan, C. Y. 1986 Bomb produced 14C content in tree rings grown at different latitudes. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 346349.Google Scholar
Fritts, H. C. 1976 Tree Rings and Climate. London, Academic Press, Inc.: 567 p.Google Scholar
Glad, T. and Nydal, R. 1982 Radial transport of 14C in Norwegian pine. In Hackens, T., ed., Proceedings of the 2nd Nordic Conference on the Application of Scientific Methods in Archaeology. PACT 7(1): 4552.Google Scholar
Grootes, P. M., Farwell, G. W., Schmidt, F. H., Leach, D. D. and Stuiver, M. 1989 Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus 41B: 134148.CrossRefGoogle Scholar
Hut, G., Östlund, H. G. and van der Borg, K. 1986 Fast and complete CO2-graphite conversion for accelerator mass spectrometry. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 186190.Google Scholar
Jansen, H. S. 1970 Secular variations of radiocarbon in New Zealand and Australian trees. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology, Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist & Wiksell and New York, John Wiley & Sons: 261274.Google Scholar
Jansen, H. S. 1973 Transfer of carbon from solvents to samples. In Rafter, T. A. and Grant-Taylor, T., eds., Proceedings of the 8th International 14C Conference. Wellington, Royal Society of New Zealand: B63B68.Google Scholar
Long, A., Arnold, L. D., Damon, P. E., Ferguson, C. W., Lerman, J. C. and Wilson, A. T. 1979 Radial translocation of carbon in bristlecone pine. In Berger, R. and Suess, H. E., eds., Radiocarbon Dating. Proceedings of the 9th International 14C conference. Berkeley, University of California Press: 532537.Google Scholar
Nydal, R. and Løvseth, K. 1983 Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6): 36213642.CrossRefGoogle Scholar
Olson, E. A. and Broecker, W. S. 1958 Sample contamination and reliability of radiocarbon dates. Transactions of the New York Academy of Sciences, Series II 20: 593604.Google Scholar
Olsson, I. U. 1979 The importance of the pretreatment of wood and charcoal samples. In Berger, R. and Suess, H. E., eds., Radiocarbon Dating. Proceedings of the 9th International 14C conference. Berkeley, University of California Press: 135146.Google Scholar
Olsson, I. U. 1980 14C in extractives from wood. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 515524.Google Scholar
Olsson, I. U., El-Gammal, S. and Göksu, Y. 1969 Uppsala natural radiocarbon measurements IX. Radiocarbon 11(2): 515544.Google Scholar
Olsson, I. U. and Karlén, I. 1965 Uppsala radiocarbon measurements VI. Radiocarbon 7: 331335.Google Scholar
Olsson, I. U. and Klasson, M. 1970 Uppsala radiocarbon measurements X. Radiocarbon 12(1): 281284.CrossRefGoogle Scholar
Olsson, I. U., Klasson, M. and Abd-El-Mageed, A. 1972 Uppsala natural radiocarbon measurements XI. Radiocarbon 14(1): 247271.Google Scholar
Possnert, G. 1990 Radiocarbon dating by the accelerator technique. In Proceedings of the 4th Nordic Conference on the Application of Scientific Methods in Archaeology. Norwegian Archaeological Review 23: 3037.CrossRefGoogle Scholar
Stenberg, A. and Olsson, I. U. 1967 Uppsala radiocarbon measurements VIII. Radiocarbon 9: 471476.Google Scholar
Tans, P. P., de Jong, A. F. M. and Mook, W. G. 1978 Chemical pretreatment and radial flow of 14C in tree rings. Nature 271(5642): 234235.CrossRefGoogle Scholar
de Vries, H. and Barendsen, G. W. 1954 Measurements of age by the carbon-14 technique. Nature 174: 11381141.Google Scholar
Wilson, A. T., Gumbley, J. M. and Speddin, D. J. 1963 Resin metabolism in the sapwood of Pinus radiata. Nature 198: 500.CrossRefGoogle Scholar