Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T08:48:58.265Z Has data issue: false hasContentIssue false

Vegetation and environmental changes at the Middle Stone Age site of Wonderkrater, Limpopo, South Africa

Published online by Cambridge University Press:  14 August 2017

Elysandre Puech
Affiliation:
Paleoclimatology and Marine Paleoenvironments Laboratory, EPHE PSL Research University, 75014 Paris, France Environnements et Paléoenvironnements Océaniques et Continentaux, UMR 5805, Université de Bordeaux, Allée Geoffroy St. Hilaire, 33615 Pessac, France De la Préhistoire á l’Actuel: Culture, Environnement et Anthropologie, UMR 5199 CNRS, Université de Bordeaux, Allée Geoffroy St. Hilaire, CS 50 023, 33615 Pessac, France
Dunia H. Urrego
Affiliation:
Paleoclimatology and Marine Paleoenvironments Laboratory, EPHE PSL Research University, 75014 Paris, France Environnements et Paléoenvironnements Océaniques et Continentaux, UMR 5805, Université de Bordeaux, Allée Geoffroy St. Hilaire, 33615 Pessac, France Department of Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, United Kingdom
María Fernanda Sánchez Goñi*
Affiliation:
Paleoclimatology and Marine Paleoenvironments Laboratory, EPHE PSL Research University, 75014 Paris, France Environnements et Paléoenvironnements Océaniques et Continentaux, UMR 5805, Université de Bordeaux, Allée Geoffroy St. Hilaire, 33615 Pessac, France
Lucinda Backwell
Affiliation:
Evolutionary Studies Institute and DST-NRF Centre of Excellence in Palaeosciences, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
Francesco d’Erricoc
Affiliation:
Evolutionary Studies Institute and DST-NRF Centre of Excellence in Palaeosciences, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
*
*Corresponding author at: Paleoclimatology and Marine Paleoenvironments Laboratory, École Pratique de Hautes Études, Paris Sciences et Lettres Research University, 75014 Paris, France. E-mail address: mf.sanchezgoni@epoc.u-bordeaux1.fr (M.F. Sánchez Goñi).

Abstract

Wonderkrater, a Middle Stone Age site in the interior of South Africa, is a spring and peat mound featuring both paleoclimatic and archaeological records. The site preserves three small MSA lithic assemblages with age estimates of 30 ka, >45 ka and 138.01±7.7 ka. Here we present results of the pollen analysis of a core retrieved from the middle of the peat mound, which covers, with hiatuses, the timespan between ca. 70±10 ka and 30 ka. Pollen percentages of terrestrial, local aquatic, and semi-aquatic plants reveal changes in the regional climate and in the water table of the spring. Results identify regional wet conditions at ca. 70±10 ka, followed by a dry and a wet period between 60 ka and 30 ka. Superimposed on these three phases, recurring changes in the size and depth of the water table are observed between >45 ka and 30 ka. Wet conditions at 70 ka and 30 ka are tentatively correlated here with Marine Isotope Stage 4 and Heinrich Stadial 3, respectively. A warm and dry savanna landscape was present during human occupation older than 45 ka, and a wet phase was contemporaneous with the final occupation, dated at ~30 ka.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashley, G.M., Goman, M., Hover, V., Owen, R.B., Renaut, R.W., Muasya, A.M, 2002. Artesian blister wetlands, a perennial water resource in the semi-arid Rift Valley of East Africa. Wetlands 22, 686695.Google Scholar
Backwell, L.R., McCarthy, T.S., Wadley, L., Henderson, Z., Steininger, C.M., Barré, M., Lamothe, M., et al., 2014. Multiproxy record of late Quaternary climate change and Middle Stone Age human occupation at Wonderkrater, South Africa. Quaternary Science Reviews 99, 4259.Google Scholar
Bar-Matthews, M., Marean, C.W., Jacobs, Z., Karkanas, P., Fisher, E.C., Herries, A.I., Brown, K., et al., 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews 29, 21312145.Google Scholar
Barré, M., Lamothe, M., Backwell, L., McCarthy, T., 2012. Optical dating of quartz and feldspars: a comparative study from Wonderkrater, a Middle Stone Age site of South Africa. Quaternary Geochronology 10, 374379.Google Scholar
Beal, L.M., Bryden, H.L., 1999. The velocity and vorticity structure of the Agulhas Current at 32° S. Journal of Geophysical Research: Oceans 104, 51515176.Google Scholar
Birks, H.J.B., Birks, H.H., 1980. Principles and methods of pollen analysis. In: Birks, H.J.B., Birks, H.H. (Eds.), Quaternary Palaeoecology. Edward Arnold, London, p. 156176.Google Scholar
Blome, M.W., Cohen, A.S., Tryon, C.A., Brooks, A.S. and Russell, J., 2012. The environmental context for the origins of modern human diversity: A synthesis of regional variability in African climate 150,000–30,000 years ago. Journal of Human Evolution 62, 563592.Google Scholar
Brink, J.S., 1987. The archaeozoology of Florisbad, Orange Free State. PhD dissertation, Stellenbosch University, Stellenbosch, South Africa.Google Scholar
Campisano, C.J., Feibel, C.S., 2007. Connecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution 53, 515527.CrossRefGoogle ScholarPubMed
Carrión, J. S., Scott, L., Huffman, T., Dreyer, C., 2000. Pollen analysis of Iron Age cow dung in southern Africa. Vegetation History and Archaeobotany 9, 239249.Google Scholar
Chase, B.M., 2010. South African palaeoenvironments during marine oxygen isotope stage 4: a context for the Howiesons Poort and Still Bay industries. Journal of Archaeological Science 37, 13591366.Google Scholar
Chase, B.M., and Meadows, M.E., 2007. Late Quaternary dynamics of southern Africa's winter rainfall zone. Earth-Science Reviews 84, 103138.Google Scholar
Chase, B.M., Meadows, M.E., Carr, A.S., and Reimer, P.J., 2010. Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African Monsoon dynamics and the “African Humid Period.”. Quaternary Research 74, 3645.Google Scholar
Chevalier, M., and Chase, B.M., 2015. Southeast African records reveal a coherent shift from high-to low-latitude forcing mechanisms along the east African margin across last glacial–interglacial transition. Quaternary Science Reviews 125, 117130.CrossRefGoogle Scholar
Christopher, R.A., 1976. Morphology and taxonomic status of Pseudoschizaea, Thiergart and Frantz ex R. Potonie emend. Micropaleontology 22, 143150.CrossRefGoogle Scholar
Clark, J., Plug, I., 2008. Animal exploitation strategies during the South African Middle Stone Age: HP and post-HP fauna from Sibudu Cave. Journal of Human Evolution 54, 886898.Google Scholar
Coetzee, J.A., 1967. Pollen analytical studies in East and Southern Africa, In: van Zinderen Bakker, E.M., (Ed.), Palaeoecology of Africa 3. A. A. Balkema, Cape Town, South Africa, pp. 1–146.Google Scholar
Compton, J.S., 2011. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa. Quaternary Science Review 30, 506527.Google Scholar
Cowling, R.M., Richardson, D.M., Pierce, S.M., 1997. Vegetation of Southern Africa. Cambridge University Press, Cambridge.Google Scholar
de la Peña, P., Wadley, L., 2014. New knapping methods in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa). Quaternary International 350, 2642.Google Scholar
Daniau, A.-L., Sánchez Goñi, M. F., Martinez, P., Urrego, D. H., Bout-Roumazeilles, V., Desprat, S., Marlon, J. R., 2013. Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences 110, 50695073.Google Scholar
Deacon, H.J., Deacon, J., 1999. Human Beginnings in South Africa: Uncovering the Secrets of the Stone Age. David Philip Publishers, Cape Town.Google Scholar
Dreyer, T.F., 1938. The Archaeology of the Florisbad Deposits. Argueologiese Navorsing van die Nasionale Museum 1, 183190.Google Scholar
Dupont, L.M., 2011. Orbital scale vegetation change in Africa. Quaternary Science Review 30, 35893602.Google Scholar
Dupont, L.M., Caley, T., Kim, J.-H., Castañeda, I., Malaizé, B., Giraudeau, J., 2011. Glacialinterglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean. Climate of the Past 7, 12091224.Google Scholar
Field, J.S., Petraglia, M.D., Lahr, M.M., 2007. The southern dispersal hypothesis and the South Asian archaeological record: examination of dispersal routes through GIS analysis. J. Anthropological Archaeology 26, 88108.Google Scholar
Gajewski, K., Lézine, A.-M., Vincens, A., Delestan, A., Sawada, M., 2002. Modern climate–vegetation–pollen relations in Africa and adjacent areas. Quaternary Science Reviews 21, 16111631.CrossRefGoogle Scholar
Gasse, F., Chalié, F., Vincens, A., Williams, M.A., and Williamson, D., 2008. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 27, 23162340.Google Scholar
Hannon, G. E., Gaillard, M. J., 1997. The plant-macrofossil record of past lake-level changes. Journal of Paleolimnology 18, 1528.Google Scholar
Harrison, S.P., Digerfeldt, G., 1993. European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews 12, 233248.Google Scholar
Harrison, S. and Goñi, M.S., 2010. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quaternary Science Reviews 29, 29572980.CrossRefGoogle Scholar
Hazelton, E.L., Mozdzer, T.J., Burdick, D.M., Kettenring, K.M., Whigham, D.F., 2014. Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 6, 119.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International journal of climatology 25, 19651978.Google Scholar
Hughes, J.K., Haywood, A., Mithen, S.J., Sellwood, B.W., Valdes, P.J., 2007. Investigating early hominin dispersal patterns: developing a framework for climate data integration. Journal of Human Evolution 53, 465474.Google Scholar
Ireland, A.W., Booth, R.K., Hotchkiss, S.C., Schmitz, J.E., 2012. Drought as a trigger for rapid state shifts in kettle ecosystems: implications for ecosystem responses to climate change. Wetlands 32, 9891000.CrossRefGoogle Scholar
Jacobs, Z., Roberts, R.G., 2009. Catalysts for Stone Age innovations: what might have triggered two short-lived bursts of technological and behavioral innovation in southern Africa during the Middle Stone Age? Communicative & Integrative Biology 2, 191193.Google Scholar
Jacobs, Z., Roberts, R.G., Galbraith, R.F., Deacon, H.J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R., Wadley, L., 2008. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal. Science 322, 733735.Google Scholar
Kotze, D.C., 2013. The effects of fire on wetland structure and functioning. African Journal of Aquatic Science 38, 237247.Google Scholar
Kuman, K., Inbar, M., Clarke, R.J., 1999. Palaeoenvironments and cultural sequence of the Florisbad Middle Stone Age hominid site, South Africa. Journal of Archaeological Science 26, 14091425.Google Scholar
Lahr, M.M., Foley, R.A., 1998. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearbook of Physical Anthropology 41, 137176.Google Scholar
Lechevrel, S., 2012. Représentation pollinique des différentes formations végétales de l’ouest de l’Afrique du Sud. Master’s thesis, University of Bordeaux, Bordeaux, France.Google Scholar
Lim, S., Chase, B.M., Chevalier, M., Reimer, P.J., 2016. 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 451, 197209.Google Scholar
Low, A.B., Rebelo, A.G. (Eds.) 1996. Vegetation of South Africa, Lesotho and Swaziland: A Companion to the Vegetation Map of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria, South Africa.Google Scholar
Marean, C.W., 2010a. Coastal South Africa and the co-evolution of the modern human lineage and the coastal adaptation. In: Bicho, N., Haws, J.A., Davis, L.G. (Eds.), Trekking the Shore: Changing Coastlines and the Antiquity of Coastal Settlement. Springer, New York, pp. 421440.Google Scholar
Marean, C.W., 2010b. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral Kingdom, shellfish, and modern human origins. Journal of Human Evolution 59, 425443.Google Scholar
Marean, C.W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A., Jacobs, Z., et al., 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905908.Google Scholar
Maslin, M.A., Christensen, B., 2007. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. Journal of Human Evolution 53, 443454.Google Scholar
McCarthy, T.S., Ellery, W.N., Backwell, L., Marren, P., De Klerk, B., Tooth, S., Brandt, D., Woodborne, S., 2010. The character, origin and paleoenvironmental significance of the Wonderkrater spring mound, South Africa. Journal of African Earth Sciences 58, 115126.Google Scholar
McCormick, M.K., Kettenring, K.M., Baron, H.M., Whigham, D.F., 2010. Extent and reproductive mechanisms of phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30, 6774.Google Scholar
Mellars, P., 2006. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proceedings of the National Academy of Sciences 103, 93819386.Google Scholar
Mucina, L., Rutherford, M.C., 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia, Vol. 19. South African National Biodiversity Institute, Pretoria.Google Scholar
Potts, R., 1998. Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology 107, 93136.Google Scholar
Reille, M., 1990. Leçons de palynologie et d’analyse pollinique. Éditions du Centre National de la Recherche Scientifique. Presses du Centre National de la Recherche Scientifique, Paris.Google Scholar
Roberts, P., Henshilwood, C.S., van Niekerk, K.L., Keene, P., Gledhill, A., Reynard, J., Badenhorst, S., Lee-Thorp, J., 2016. Climate, environment and early human innovation: stable isotope and faunal proxy evidence from archaeological sites (98-59ka) in the Southern Cape, South Africa. PLOS ONE 11, e0157408. https://doi.org/10.1371/journal.pone.0157408.Google Scholar
Rossignol, M., 1962. Analyse pollinique de sédiments marins Quaternaires en Israël. Pollen et Spores 4, 121148.Google Scholar
Rossignol, M., 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les sédiments Pléistocènes et les boues marines actuelles. Revue de Micropaléontologie 7, 8399.Google Scholar
Rutherford, M.C., 1997. Categorization of biomes. In: Cowling, R.M., Richardson, D.M., Pierce, S.M. (Eds.), Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp. 9198.Google Scholar
Sanchez Goñi, M. F., Hannon, G.E., 1999. High-altitude vegetational pattern on the Iberian Mountain Chain (north-central Spain) during the Holocene. The Holocene 9, 3957.CrossRefGoogle Scholar
Sanchez Goñi, M. F., Harrison, S. P., 2010. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quaternary Science Review 29, 28232827.Google Scholar
Scholes, R.J., 1997. Savanna. In: Cowling, R.M., Richardson, D.M., Pierce, S.M. (Eds.), Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp. 258277.Google Scholar
Scholz, C.A., Johnson, T.C., Cohen, A.S., King, J.W., Peck, J.A., Overpeck, J.T., Talbot, M.R., et al., 2007. East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proceedings of the National Academy of Sciences 104, 1641616421.Google Scholar
Scott, L., 1982a. A Late Quaternary pollen record from the Transvaal bushveld, South Africa. Quaternary Research 17, 339370.Google Scholar
Scott, L., 1982b. Late quaternary fossil pollen grains from the Transvaal, South Africa. Review of Palaeobotany and Palynology 36, 32413278.Google Scholar
Scott, L., 1989. Climatic conditions in southern Africa since the last glacial maximum, inferred from pollen analysis.. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 345353.Google Scholar
Scott, L., 1992. Environmental implications and origin of microscopic Pseudoschizaea Thiergart and Frantz ex R. Potonié emend. in sediments. Journal of Biogeography, 349354.Google Scholar
Scott, L., 1999. The vegetation history and climate in the Savanna Biome, South Africa, since 190 000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria saltpan) and Wonderkrater. Quaternary International 57–58, 215223.Google Scholar
Scott, L., 2016. Fluctuations of vegetation and climate over the last 75 000 years in the Savanna Biome, South Africa: Tswaing Crater and Wonderkrater pollen sequences reviewed. Quaternary Science Reviews 145, 117133.Google Scholar
Scott, L., Holmgren, K., Talma, A.S., Woodborne, S., Vogel, J.C., 2003. Age interpretation of the Wonderkrater spring sediments and vegetation. South African Journal of Science 99, 485.Google Scholar
Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E., Metwally, A. A., 2012. Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quaternary Science Review 32, 100118.Google Scholar
Scott, L., Nyakale, M., 2002. Pollen indications of Holocene palaeoenvironments at Florisbad spring in the central Free State, South Africa. The Holocene 12, 497503.Google Scholar
Scott, L., Steenkamp, M., Beaumont, P.B., 1995. Palaeoenvironmental conditions in South Africa at the Pleistocene-Holocene transition. Quaternary Science Reviews 14, 937947.CrossRefGoogle Scholar
Scott, L., Thackeray, J.F., 1987. Multivariate analysis of Late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science 83, 9398.Google Scholar
Scott, L., Vogel, J.C., 1983. Late Quaternary pollen profile from the Transvaal highveld, South Africa. South African Journal of Science 79, 266272.Google Scholar
Thomas, D.S., Burrough, S.L., Parker, A.G., 2012. Extreme events as drivers of early human behaviour in Africa? The case for variability, not catastrophic drought. Journal of Quaternary Science 27, 712.CrossRefGoogle Scholar
Trauth, M.H., Larrasoaña, J.C., Mudelsee, M., 2009. Trends, rhythms and events in Plio-Pleistocene African climate. Quaternary Science Reviews 28, 399411.Google Scholar
Tribolo, C., Mercier, N., Douville, E., Joron, J.-L., Reyss, J.-L., Rufer, D., Cantin, N., et al., 2013. OSL and TL dating of the Middle Stone Age sequence of Diepkloof Rock Shelter (Western Cape, South Africa): a clarification. Journal of Archaeological Science 40, 34013411.Google Scholar
Tribolo, C., Mercier, N., Valladas, H., Joron, J.-L., Guibert, P., Lefrais, Y., Selo, M., et al., 2009. Thermoluminescence dating of a Stillbay-Howiesons Poort sequence at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Sciences 36, 730739.Google Scholar
Tribolo, C., Mercier, N., Valladas, H., 2005. Chronology of the Howiesons Poort and Still Bay techno-complexes: assessment and new data from luminescence. In: d’Errico, F., Blackwell, L. (Eds.), From Tools to Symbols: From Early Hominids to Modern Humans. Witwatersrand University Press, Johannesburg, pp. 493511.Google Scholar
Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M.E., Scott, L., Carr, A.S., Smith, G.F., Chase, B.M., 2013. Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: implications for the long-term dynamics of the Intertropical Convergence Zone. Paleogeography, Paleoclimatology, Paleoecology 386, 575587.Google Scholar
Tyson, P. D., Preston-Whyte, R. A., 2000. The Weather and Climate of Southern Africa. Oxford University Press Southern Africa, Cape Town.Google Scholar
Urrego, D.H., Sanchez Goñi, M.F., Daniau, A.L., Lechevrel, S., Hanquiez, V., 2015. South-western Africa vegetation responses to atmospheric and oceanic changes during the last climatic cycle. Climate of the Past Discussions 11, 14171431.Google Scholar
Weigelt, J., 1989. Recent Vertebrate Carcasses and Their Paleobiological Implications. University of Chicago Press, Chicago.Google Scholar
White, F., 1983. The Vegetation Of Africa: A Descriptive Memoir to Accompany the Unesco/ AETFAT/UNSO Vegetation Map of Africa. United Nations, Paris.Google Scholar
Will, M., Kandel, A.W., Kyriacou, K., Conard, N.J., 2016. An evolutionary perspective on coastal adaptations by modern humans during the Middle Stone Age of Africa. Quaternary International 404, 6886.Google Scholar
Woillez, M.N., Levavasseur, G., Daniau, A.L., Kageyama, M., Urrego, D.H., Sánchez-Goñi, M.F., Hanquiez, V., 2014. Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4. Climate of the Past 10, 11651182.CrossRefGoogle Scholar
Ziegler, M., Simon, M.H., Hall, I.R., Barker, S., Stringer, C., Zahn, R., 2013. Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications 4, 1905. http://dx.doi.org/10.1038/ncomms2897.Google Scholar
Supplementary material: PDF

Puech supplementary material

Puech supplementary material 1

Download Puech supplementary material(PDF)
PDF 755.4 KB