Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T00:50:06.112Z Has data issue: false hasContentIssue false

Paleoenvironmental changes in the eastern Kumtag Desert, northwestern China since the late Pleistocene

Published online by Cambridge University Press:  24 August 2023

Haoze Song
Affiliation:
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
Xiaoping Yang*
Affiliation:
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
Frank Preusser*
Affiliation:
Institute of Earth and Environmental Sciences, University of Freiburg, 23b Albertstraße, Freiburg 79104, Germany
Alexander Fülling
Affiliation:
Institute of Earth and Environmental Sciences, University of Freiburg, 23b Albertstraße, Freiburg 79104, Germany
Bo Chen
Affiliation:
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
*
Corresponding authors: X. Yang; xpyang@zju.edu.cn; F. Preusser; frank.preusser@geologie.uni-freiburg.de
Corresponding authors: X. Yang; xpyang@zju.edu.cn; F. Preusser; frank.preusser@geologie.uni-freiburg.de

Abstract

Sedimentary records from the Kumtag (also known as Kumtagh) Desert (KMD) in northwestern China are investigated to better understand Late Quaternary paleoenvironmental changes in this hyper-arid region. Presented here are the results of probably the first systematic survey of sedimentary sequences from the KMD, with the chronology determined by the optically stimulated luminescence dating. The variation of sedimentary facies, supported by granular and geochemical paleoenvironmental proxies, is used to decipher the history of Late Quaternary environment changes. The results demonstrate that a constantly dry condition characterized the eastern KMD since the last glacial maximum, but with occurrences of wetter periods. From ca. 17 to 15 ka, fluvial activity was probably triggered by melting of glaciers in mountains located south of the KMD. A distinctly drier stage (ca. 13–7 ka) was recognized due to the prominent occurrence of aeolian sands. A wetter environment likely persisted between ca. 4.4 and 2.2 ka, consistent with evidence of human activities. While the causes of paleoenvironmental changes in the eastern KMD are still a matter of debate, the melting of glaciers in the Altyn-Tagh Mountains in the south must be considered as an important factor.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biscaye, P.E., Grousset, F.E., Revel, M., Van der Gaast, S., Zielinski, G.A., Vaars, A., Kukla, G., 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 ice core, Summit, Greenland. Journal of Geophysical Research: Oceans 102, 2676526781.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., Marković, S., 2011. An evaluation of geochemical weathering indices in loess–paleosol studies. Quaternary International 240, 1221.CrossRefGoogle Scholar
Bullard, J.E., Baddock, M., Bradwell, T., Crusius, J., Darlington, E., Gaiero, D., Gassó, S., et al., 2016. High-latitude dust in the Earth system. Reviews of Geophysics 54, 447485.CrossRefGoogle Scholar
Chen, F.H., Yu, Z.C., Yang, M.L., Ito, E., Wang, S.M., Madsen, D.B., Huang, X.Z., et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.CrossRefGoogle Scholar
Chen, F.H., Chen, J.H., Holmes, J., Boomer, I., Austin, P., Gates, J.B., Wang, N.L., Brooks, S.J., Zhang, J.W., 2010. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews 29, 10551068.CrossRefGoogle Scholar
Chen, F.H., Jia, J., Chen, J.H., Li, G.Q., Zhang, X.J., Xie, H.C., Xia, D.S., Huang, W., An, C.B., 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews 146, 134146.CrossRefGoogle Scholar
Chen, J.A., Wang, G.J., Tang, D.G., 2000. Recent climate changes recorded by sediment grain sizes and isotopes in Erhai Lake. Progress in Natural Science 10, 253259. [in Chinese]Google Scholar
Chen, Q.J., Li, Z.L., Dong, S.P., Yu, Q.J., Zhang, C., Yu, X.H., 2021. Applicability of chemical weathering indices of eolian sands from the deserts in northern China. Catena 198, 105032. https://doi.org/10.1016/j.catena.2020.105032.CrossRefGoogle Scholar
Chen, X.L., Niu, Z.R., Huang, W.D., Zhang, W., Wang, Y., Zhang, C., 2017. Mode and effect of flood resources utilization in Xitugou watershed of Dunhuang. Journal of China Hydrology 37, 7377. [in Chinese]Google Scholar
Dietze, E., Hartmann, K., Diekmann, B., IJmker, J., Lehmkuhl, F., Opitz, S., Stauch, G., Wünnemann, B., Borchers, A., 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243, 169180.CrossRefGoogle Scholar
Ding, F., 2017. Environmental Process of Sandy Loess Deposition in Southeastern Margin of Kumtagh Desert. PhD Thesis, Chinese Academy of Forestry, Beijing.Google Scholar
Ding, F., Tang, J.N., Su, Z.Z., Zhang, J.H., Lu, Q., 2017. Deposited process and provenance analysis of BL sand loess section in southeastern margin of the Kumtagh Desert. Quaternary Sciences 37, 3644.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F., Liu, T.S., 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Earth Paleoceanography 17, 5-1–5-21.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.CrossRefGoogle Scholar
Dong, Z.B., Qian, G.Q., Yan, P., Su, Z.Z., 2010a. Gravel bodies in the Kumtagh Desert and their geomorphological implications. Environmental Earth Sciences 59, 17711779.CrossRefGoogle Scholar
Dong, Z.B., Wei, Z.H., Qian, G.Q., Zhang, Z.C., Luo, W.Y., Hu, G.Y., 2010b. “Raked” linear dunes in the Kumtagh Desert, China. Geomorphology 123, 122128.CrossRefGoogle Scholar
Dong, Z.B., , P., Lu, J.F., Qian, G.Q., Zhang, Z.C., Luo, W.Y., 2012. Geomorphology and origin of yardangs in the Kumtagh Desert, Northwest China. Geomorphology 139–140, 145154.CrossRefGoogle Scholar
Dong, Z.B., Qian, G.Q., Luo, W.Y., Zhang, Z.C., , P., 2013a. Dune types and their distribution in the Kumtagh Sand Sea, northwestern China. Zeitschrift für Geomorphologie 57, 207224.CrossRefGoogle Scholar
Dong, Z.B., Zhang, Z.C., Qian, G.Q., Luo, W.Y., Lv, P., Lu, J.F., 2013b. Geomorphology of star dunes in the southern Kumtagh Desert, China: control factors and formation. Environmental Earth Sciences 69, 267277.CrossRefGoogle Scholar
Duan, F.T., An, C.B., Wang, W., Herzschuh, U., Zhang, M., Zhang, H.X., Liu, Y., Zhao, Y.T., Li, G.Q., 2020. Dating of a late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental significance. Quaternary International 544, 104112.CrossRefGoogle Scholar
Folk, R.L., Ward, W.C., 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 326.CrossRefGoogle Scholar
Fralick, P.W., Kronberg, B.I., 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology 113, 111124.CrossRefGoogle Scholar
Goudie, A., 2002. Great Warm Deserts of the World: Landscapes and Evolution. Oxford University Press, New York.CrossRefGoogle Scholar
Hedin, S., 1903. Central Asia and Tibet. Towards the Holy City of Lasa. Hurst and Blackett, and Charles Scribner Sons, London and New York.Google Scholar
Hövermann, J., 1998. Zur paläoklimatologie Zentralasiens – quantitative Bestimmungen von Paläoniederschlag und -temperatur. Petermanns Geographische Mitteilungen 142, 251257.Google Scholar
Hu, Y.L., Ning, G.C., Kang, C.Y., Wang, S.G., Shang, K.Z., Yang, X., 2017. Temporal and spatial variability of the extreme precipitation around the Kumtag Desert. Journal of Desert Research 37, 536545. [in Chinese with English abstract]Google Scholar
Huang, X.Z., Chen, F.H., Fan, Y.X., Yang, M.L., 2009. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quaternary International 194, 1927.CrossRefGoogle Scholar
Jiang, Q.D., Yang, X.P., 2019. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: implications for provenance and sediment supply mechanisms. Journal of Geophysical Research: Earth Surface 124, 12171237.CrossRefGoogle Scholar
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 6771.CrossRefGoogle ScholarPubMed
Kang, Y.Z., Chen, S.H., Zhang, Y., Wang, S.G., Shang, K.Z., Cheng, Y.F., 2015. Precipition during 2008–2013 in the Kumtagh Desert and Altun Mountains. Journal of Desert Research 35, 203210. [in Chinese with English abstract]Google Scholar
Kelts, K., 1992. Limnological deposits—a repository of past change. Quaternary Sciences 12, 138143. [in Chinese]Google Scholar
Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S., Duller, G., et al., 2016. The INQUA Dunes Atlas chronologic database. Quaternary International 410, 310.CrossRefGoogle Scholar
Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., et al., 2014. Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. The Holocene 24, 970984.CrossRefGoogle Scholar
Li, B.C., 1998. An investigation and study on the desertification of the ancient oases from Han to Tang Dynasties in the Hexi Corridor. Acta Geographica Sinica 53, 105114.Google Scholar
Li, G.Q., Jin, M., Wen, L.J., Zhao, H., Madsen, D., Liu, X.K., Wu, D., Chen, F.H., 2014. Quartz and K-feldspar optical dating chronology of eolian sand and lacustrine sequence from the southern Ulan Buh Desert, NW China: implications for reconstructing late Pleistocene environmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 111121.CrossRefGoogle Scholar
Li, J.J., 1990. The patterns of environmental changes since late Pleistocene in northwestern China. Quaternary Sciences 3, 197204.Google Scholar
Li, K.F., Mu, G.J., Xu, L.S., 2012. Grain size characteristics and their significance for surface sediment of paleochannels along main stream of Tarim River. Bulletin of Soil Water Conservation 32, 161164. [in Chinese]Google Scholar
Li, Y., Song, Y.G., Fitzsimmons, K.E., Chen, X.L., Wang, Q.S., Sun, H.Y., Zhang, Z.P., 2018. New evidence for the provenance and formation of loess deposits in the Ili River Basin, Arid Central Asia. Aeolian Research 35, 18.CrossRefGoogle Scholar
Li, Y., Song, Y.G., Orozbaev, R., Dong, J.B., Li, X.Z., Zhou, J., 2020. Moisture evolution in Central Asia since 26 ka: insights from a Kyrgyz loess section, Western Tian Shan. Quaternary Science Reviews 249, 106604. https://doi.org/10.1016/j.quascirev.2020.106604.CrossRefGoogle Scholar
Li, Y.X., Chen, G.K., Qian, W., Chen, J.L., Wang, H., 2018. Research of the metallurgical remains in the Xitugou site at Dunhuang. Dunhang Research 2018, 131140.Google Scholar
Li, Z.J., Sun, D.H., Chen, F.H., Wang, F., Zhang, Y.B., Guo, F., Wang, X., Li, B.F., 2014. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quaternary Science Reviews 85, 8598.CrossRefGoogle Scholar
Liang, A.M., Dong, Z.B., Su, Z.Z., Qu, J.J., Zhang, Z.C., Qian, G.Q., Wu, B., Gao, J.L., Yang, Z.L., Zhang, C.X., 2020. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, Northwest China. Geomorphology 367, 107310. https://doi.org/10.1016/j.geomorph.2020.107310.CrossRefGoogle Scholar
Liang, P., Forman, S.L., 2019. LDAC: an Excel-based program for luminescence equivalent dose and burial age calculations. Ancient TL 37, 2140.Google Scholar
Liang, X.L., Niu, Q.H., Qu, J.J., Liu, B., Liu, B.L., Zhai, X.H., Niu, B.C., 2019. Applying end-member modeling to extricate the sedimentary environment of yardang strata in the Dunhuang Yardang National Geopark, northwestern China. Catena 180, 238251.CrossRefGoogle Scholar
Liu, C.L., Zhang, J.F., Jiao, P.C., Mischke, S., 2016. The Holocene history of Lop Nur and its palaeoclimate implications. Quaternary Science Reviews 148, 163175.CrossRefGoogle Scholar
Liu, J., Wang, R.J., Zhao, Y., Yang, Y., 2019. A 40,000-year record of aridity and dust activity at Lop Nur, Tarim Basin, northwestern China. Quaternary Science Reviews 211, 208221.CrossRefGoogle Scholar
Liu, R.J., Wang, J.X., Zhao, X.Y., Ding, Y., 2004. The survey and excavation of Xitugou site in Dunhuang, Gansu. Archaeology and Cultural Relics 11, 37.Google Scholar
Lu, H.Y., An, Z.S., 1998. Pretreatment methods in loess-palaeosol granulometry. Chinese Science Bulletin 42, 237240.CrossRefGoogle Scholar
, P., Narteau, C., Dong, Z.B., Rozier, O., du Pont, S.C., 2017. Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields. Nature Communications 8, 14239. https://doi.org/10.1038/ncomms14239.CrossRefGoogle ScholarPubMed
Lu, Q., Wu, B., Dong, Z.B., Lu, H.Y., Xiao, H.L., Wang, J.H., 2012. A Study of the Kumtag Desert. Science Press, Beijing. [in Chinese with English summary]Google Scholar
Martin, J.H., Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341343.CrossRefGoogle Scholar
Miller, R.L., Tegen, I., 1998. Climate response to soil dust aerosols. Journal of Climate 11, 32473267.2.0.CO;2>CrossRefGoogle Scholar
Muhs, D.R., 2017. Evaluation of simple geochemical indicators of aeolian sand provenance: late Quaternary dune fields of North America revisited. Quaternary Science Reviews 171, 260296.CrossRefGoogle Scholar
Munsell Color (Firm), 2000. Munsell Soil Color Charts. Munsell Color, Grand Rapids, MI.Google Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Olley, J.M., Pietsch, T., Roberts, R.G., 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60, 337358.CrossRefGoogle Scholar
Paterson, G.A., Heslop, D., 2015. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems 16, 44944506.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London.Google Scholar
Qian, G.Q., Dong, Z.B., Zhang, Z.C., Luo, W.Y., Lu, J.F., 2012. Granule ripples in the Kumtagh Desert, China: morphology, grain size and influencing factors. Sedimentology 59, 18881901.CrossRefGoogle Scholar
Qian, G.Q., Dong, Z.B., Zhang, Z.C., Luo, W.Y., Lu, J.F., Yang, Z.L., 2015. Morphological and sedimentary features of oblique zibars in the Kumtagh Desert of northwestern China. Geomorphology 228, 714722.CrossRefGoogle Scholar
Qin, X.G., Cai, B.G., Liu, T.S., 2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60,000 years before present. Journal of Geophysical Research: Solid Earth 110, B01204. https://doi.org/10.1029/2004JB003131.CrossRefGoogle Scholar
Ravi, S., D'Odorico, P., Breshears, D.D., Field, J.P., Goudie, A.S., Huxman, T.E., Li, J.R., et al., 2011. Aeolian processes and the biosphere. Reviews of Geophysics 49, RG3001. https://doi.org/10.1029/2010RG000328.CrossRefGoogle Scholar
Shao, Y.P., Wyrwoll, K.-H., Chappell, A., Huang, J.P., Lin, Z.H., McTainsh, G.H., Mikami, M., Tanaka, T.Y., Wang, X.L., Yoon, S., 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research 2, 181204.CrossRefGoogle Scholar
Tang, J.N., Ding, F., Zhang, J.H., 2017. BL section recording process of rapid climate change event of Holocene at southeastern edge of the Kumtagh Desert. Arid Land Geography 40, 11711178.Google Scholar
Tang, J.N., Su, Z.Z., Ding, F., Zhu, S.J., E, Y.H., Zhai, X.W., Yi, Z.Y., Liu, H.J., Zhang, J.C., Li, F.M., 2011. The formation age and evolution of Kumtagh Desert. Journal of Arid Land 3, 114122.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.N., Dai, J., Bolzan, J.F., Yao, T., 1995. A 1000 year climate ice-core record from the Guliya ice cap, China: its relationship to global climate variability. Annals of Glaciology 21, 175181.CrossRefGoogle Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139153.CrossRefGoogle Scholar
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y., Sugimoto, N., 2009. Asian dust transported one full circuit around the globe. Nature Geoscience 2, 557560.CrossRefGoogle Scholar
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H.Y., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into Central and East Asia. Quaternary Science Reviews 25, 23802389.CrossRefGoogle Scholar
Wallinga, J., 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31, 303322.CrossRefGoogle Scholar
Weltje, G.J., 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 29, 503549.CrossRefGoogle Scholar
Williams, M., 2014. Climate Change in Deserts. Cambridge University Press, London.CrossRefGoogle Scholar
Wu, H.B., Guo, Z.T., 2000. Evolution and drought events in arid region of northern China since the Last Glacial Maximum. Quaternary Sciences 20, 548558.Google Scholar
Xia, X.C., Fan, Z.L., 1987. The essential characteristics of Kumtagh Desert. In: Xia, X. (Ed.), Scientific Exploration and Study of the Lop Nur. Science Press, Beijing, pp. 7894. [in Chinese]Google Scholar
Xiao, J.L., Fan, J.W., Zhou, L., Zhai, D.Y., Wen, R.L., Qin, X.G., 2013. A model for linking grain-size component to lake level status of a modern clastic lake. Journal of Asian Earth Sciences 69, 149158.CrossRefGoogle Scholar
Xu, Z.W., Lu, H.Y., Zhao, C.F., Wang, X.Y., Su, Z.Z., Wang, Z.T., Liu, H.Y., Wang, L.X., Lu, Q., 2011. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China. Journal of Geographical Sciences 21, 10621076.CrossRefGoogle Scholar
Yang, B., Braeuning, A., Johnson, K.R., Yafeng, S., 2002. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters 29, 38-31–38-34.CrossRefGoogle Scholar
Yang, S.L., Ding, F., Ding, Z.L., 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta 70, 16951709.CrossRefGoogle Scholar
Yang, X.P., Scuderi, L.A., 2010. Hydrological and climatic changes in deserts of China since the late Pleistocene. Quaternary Research 73, 19.CrossRefGoogle Scholar
Yang, X.P., Liu, T.S., Xiao, H.L., 2003. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quaternary International 104, 99112.CrossRefGoogle Scholar
Yang, X., Rost, K., Lehmkuhl, F., Zhu, Z., Dodson, J., 2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International 118–119, 6985.CrossRefGoogle Scholar
Yang, X.P., Preusser, F., Radtke, U., 2006. Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits. Quaternary Science Reviews 25, 923932.CrossRefGoogle Scholar
Yang, X.P., Ma, N.N., Dong, J.F., Zhu, B.Q., Xu, B., Ma, Z.B., Liu, J.Q., 2010. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quaternary Research 73, 1019.CrossRefGoogle Scholar
Yang, X.P., Li, H.W., Conacher, A., 2012. Large-scale controls on the development of sand seas in northern China. Quaternary International 250, 7483.CrossRefGoogle Scholar
Yang, X.P., Forman, S., Hu, F.G., Zhang, D.G., Liu, Z.T., Li, H.W., 2016. Initial insights into the age and origin of the Kubuqi sand sea of northern China. Geomorphology 259, 3039.CrossRefGoogle Scholar
Yang, X.P., Du, J.H., Liang, P., Zhang, D.G., Chen, B., Rioual, P., Zhang, F., Li, H.W., Wang, X.L., 2021. Palaeoenvironmental changes in the central part of the Taklamakan Desert, northwestern China since the late Pleistocene. Chinese Science Bulletin 66, 32053218.CrossRefGoogle Scholar
Yin, Z.Q., Qin, X.G., Wu, J.S., Ning, B., 2009. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of northern China. Acta Sedimentologica Sinica 27, 343351. [in Chinese]Google Scholar
Yu, G., Chen, X., Liu, J., Wang, S.M., 2001. Preliminary study on LGM climate simulation and the diagnosis for East Asia. Chinese Science Bulletin 46, 364368.Google Scholar
Yu, S.Y., Colman, S.M., Li, L.X., 2016. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions. Mathematical Geosciences 48, 723741.Google Scholar
Zhai, S.D., 2017. The changes of the Dunhuang Beacon Towers and the Silk Road. Gansu Social Sciences 5, 130135. [in Chinese]Google Scholar
Zhang, C.J., Feng, Z.D., Yang, Q.L., Gou, X.H., Sun, F.F., 2010. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. The Holocene 20, 363373.CrossRefGoogle Scholar
Zhang, X.N., Zhou, A.F., Wang, X., Song, M., Zhao, Y.T., Xie, H.C., Russell, J.M., Chen, F.H., 2018. Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering. Quaternary Research 89, 365373.CrossRefGoogle Scholar
Zhao, L.Y., Lu, H.Y., Zhang, E.L., Wang, X.Y., Yi, S.W., Chen, Y.Y., Zhang, H.Y., Wu, B., 2015. Lake-level and paleoenvironment variations in Yitang Lake (northwestern China) during the past 23 ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments. Quaternary Sciences 35, 172179. [in Chinese]Google Scholar
Zhou, W., Dodson, J., Head, M., Li, B., Hou, Y., Lu, X., Donahue, D., Jull, A.J., 2002. Environmental variability within the Chinese desert-loess transition zone over the last 20000 years. The Holocene 12, 107112.CrossRefGoogle Scholar
Zhu, Z.D., Wu, Z., Liu, S., Di, X.M., 1980. An Outline of Chinese Deserts. Science Press, Beijing. [in Chinese]Google Scholar
Supplementary material: PDF

Song et al. supplementary material

Song et al. supplementary material

Download Song et al. supplementary material(PDF)
PDF 1.1 MB