Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T22:39:33.371Z Has data issue: false hasContentIssue false

Origin, migration pathways, and paleoenvironmental significance of Holocene ostracod records from the northeastern Black Sea shelf

Published online by Cambridge University Press:  12 January 2017

Maria A. Zenina*
Affiliation:
P.P. Shirshov Institute of Oceanology, Russian Academy of Science, 36 Nakhimovsky Prospect, Moscow 117997, Russia
Elena V. Ivanova
Affiliation:
P.P. Shirshov Institute of Oceanology, Russian Academy of Science, 36 Nakhimovsky Prospect, Moscow 117997, Russia
Lee R. Bradley
Affiliation:
School of Science and Environment, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
Ivar O. Murdmaa
Affiliation:
P.P. Shirshov Institute of Oceanology, Russian Academy of Science, 36 Nakhimovsky Prospect, Moscow 117997, Russia
Eugene I. Schornikov
Affiliation:
A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Science, 17 Pal’chevsky Street, Vladivostok 690041, Russia
Fabienne Marret
Affiliation:
Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, United Kingdom
*
*Corresponding author at: P.P. Shirshov Institute of Oceanology, Russian Academy of Science, 36 Nakhimovsky Prospect, Moscow 117997, Russia. E-mail address: maria_zenina@mail.ru (M.A. Zenina)

Abstract

Micropaleontological studies of the Black Sea, including ostracod records, have suggested that early Holocene salinity values were between ~5 and 10 practical salinity units (psu), contrasting with present values of 18–22 psu. However, more precise paleoenvironmental reconstructions based on ostracod assemblages require additional information related to their modern ecological affinities. This study uses modern species information collected from samples with living fauna to interpret the fossil Holocene assemblages of two sediment cores, Ak-2575 and Ak-521, collected from the northeastern outer shelf of the Black Sea. A total of 37 ostracod species are recorded in the fossil assemblages, with 2 related to freshwater/oligohaline environments, 23 from Caspian-type environments, and 12 from environments similar to the Mediterranean. Three distinct assemblage zones are identified from the Caspian type dominating in the early Holocene up to 7.4 cal ka BP, a mixed assemblage of Caspian type and Mediterranean type from 7.4 to 6.8 cal ka BP, and a progressive dominance of Mediterranean species from 6.8 cal ka BP. It is very likely that the dominant control of ostracod species occurrence during the period up to ~6.8 cal ka BP is salinity. A range of factors including temperature, biotope, and sedimentation rates influenced the species distribution over the last 6.8 cal ka BP.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agalarova, D.A., Kadyrova, Z.K., Kulieva, S.A., 1961. Ostracoda from Pliocene and Post-Pliocene Deposits of Azerbaijan, Baku. [In Russian.] Azerbaijan State Publisher Baku, Azerbaijan.Google Scholar
Aksu, A.E., Hiscott, R.N., Mudie, P.J., Rochon, A., Kaminski, M.A., Abrajano, T., Yaşar, D., 2002. Persistent Holocene outflow from the Black Sea to the eastern Mediterranean contradicts Noah’s flood hypothesis. GSA Today 12, 410.2.0.CO;2>CrossRefGoogle Scholar
Arpe, K., Leroy, S.A.G., 2007. The Caspian Sea level forced by the atmospheric circulation, as observed and modelled. Quaternary International 173–174, 144152.Google Scholar
Atanassova, J., 2005. Palaeoecological setting of the western Black Sea area during the last 15 000 years. Holocene 15, 576584.Google Scholar
Athersuch, J., Horne, D.J., Whittaker, J.E., 1989. Marine and Brackish Water Ostracods. E.J. Brill, Leiden, the Netherlands.Google Scholar
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R.L., Göktürk, O.M., Zumbühl, A., Leuenberger, M., Tüysüz, O., 2011. Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4, 236239.CrossRefGoogle Scholar
Bahr, A., Lamy, F., Arz, H.W., Major, C., Kwiecien, O., Wefer, G., 2008. Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochemistry, Geophysics, Geosystems 9, Q01004. http://dx.doi.org/10.1029/2007GC001683.CrossRefGoogle Scholar
Balabanov, I., 2009. Paleogeograficheskie predposilki formirovaniia sovremennikh pripodnikh uslivii i dolgosrochnii prognoz razvitiia golotsenovikh terras Chernomorskogo poberezh’ia Kavkaza [Paleogeographic prerequisites of the formation of modern environments and long-term prognosis of the development of the Holocene terraces of the Caucasian Black Sea coast]. Dal’nauka Moscow.Google Scholar
Balabanov, I.P., 2007. Holocene sea-level changes of the Black Sea. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement. Springer, Dordrecht, the Netherlands, pp. 711730.Google Scholar
Bogatko, O.N., Boguslavskii, S.G., Belyakov, Yu.M., Ivanov, R.I., 1979. Poverkhnostnie techenia Chernomo Moria [Surface currents in the Black Sea]. In: Kompleksnye Issledovaniya Chernogo Moria. Marine Hydrophysical Institute, Sevastopol, Ukraine, pp. 2533.Google Scholar
Boomer, I., 2012. Ostracoda as indicators of climatic and human-influenced changes in the late Quaternary of the Ponto-Caspian region (Aral, Caspian and Black Seas). In: Horne, D.J., Holmes, J.A., Rodriquez-Lazaro, J., Viehberg, F.A. (Eds.), Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Sciences 17. Elsevier, Amsterdam, pp. 205215.Google Scholar
Boomer, I., Grafenstein, U., von, Guichard, F., Bieda, S., 2005. Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: a unique brackish, deep-water environment. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 173186.Google Scholar
Boomer, I., Guichard, F., Lericolais, G., 2010. Late Pleistocene to Recent ostracod assemblages from the western Black Sea. Journal of Micropalaeontology 29, 119133.Google Scholar
Bottema, S., Woldring, H., Aytuğ, B., 1995. Late Quaternary vegetation history of northern Turkey. Palaeohistoria 35/36, 1372.Google Scholar
Bradley, L.R., Horne, D.J., Williams, L., Marret, F., Aksu, A., Hiscott, R., 2011. Salinity changes on the south-western shelf of the Black Sea during the Holocene. Joannea Geologie & Paläontologie 11, 3033.Google Scholar
Bradley, L.R., Marret, F., Mudie, P.J., Aksu, A.E., Hiscott, R.N., 2012. Constraining Holocene sea-surface conditions in the south-western Black Sea using dinoflagellate cysts. Journal of Quaternary Science 27(8), 835843.CrossRefGoogle Scholar
Briceag, A., Ion, G., 2014. Holocene ostracod and foraminiferal assemblages of the Romanian Black Sea shelf. Quaternary International 345, 119129.Google Scholar
Brückner, H., Kelterbaum, D., Marunchak, O., Porotov, A., Vött, A., 2010. The Holocene sea level story since 7500 BP – lessons from the eastern Mediterranean, the Black and the Azov Seas. Quaternary International 225, 160179.Google Scholar
Caraion, F.E., 1962. Nekotorie specialnie voprosi, sviazannie s ninishnim sostoyniem izucheniya fauni rakushkovih (Ostracoda) v pontoazovskom basseine [Some special questions connected with present day conditions of study of ostracod fauna (Ostracoda) in Ponto-Azov basin]. Studii ṣi cercetări de biologie. Seria Revue De Biologie VII (3б), 437449.Google Scholar
Caraion, F.E., 1967. Fauna Republicii Socialiste România. Vol. IV, Crustacea (Ostracoda). Fasc. 10, Fam. Cytheridae (Ostracode marine şi salmastricole). Editura Academiei Republicii Socialiste România, Bucharest.Google Scholar
Chepalyga, A.L., 2002. The Black Sea. [In Russian.] In: Velichko, A.A. (Ed.), Razvitie Landshaftov i Klimata Severnoy Evrazii: Pozdniy Pleystocen–Golocen—Aspecti Buduschego [Development of the northern Eurasia landscapes and climate: last Pleistocene–Holocene—perspectives of the future]. GEOS, Moscow, pp. 205285.Google Scholar
Chepalyga, A.L., 2007. Late Glacial great flood in the Ponto-Caspian basin. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement. Springer, Dordrecht, the Netherlands, pp. 119148.CrossRefGoogle Scholar
Filipova-Marinova, M., 2006. Late Pleistocene/Holocene dinoflagellate cyst assemblages from the southwestern Black Sea shelf. In: Ognjanova-Rumenova, N., Manoylov, K. (Eds.), Advances in Phycological Studies. Pensoft, Sofia, Bulgaria; St. Kliment University Press, Moscow, pp. 267281.Google Scholar
Gidrometizdat, , 1975. Oceanographic Tables. 4th ed. [In Russian.] Gidrometizdat, Leningrad.Google Scholar
Giosan, L., Coolen, M.J.L., Kaplan, J.O., Constantinescu, S., Filip, F., Filipova-Marinova, M., Kettner, A.J., Thom, N., 2012. Early Anthropogenic Transformation of the Danube-Black Sea System. Scientific Reports 2, 582. http://dx.doi.org/10.1038/srep00582.Google Scholar
Göktürk, O.M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R.L., Leuenberger, M., Fankhauser, A., Tüysüz, O., Kramers, J., 2011. Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews 30, 24332445.Google Scholar
Grigor’ev, A.V., Isagulova, E.Z., Fedorov, P.V., 1984. Chetvertichnaia sistema [Quaternary system]. In: Shnyukov, E.F. (Ed.), Geologiia shel’fa USSR: Stratigrafiia. Shel’f i poberezh’ia Chernogo moria [Geology of the Ukrainian shelf: stratigraphy. Shelf and coast of the Black Sea]. Naukova Dumka, Kiev, pp. 153166.Google Scholar
Hiscott, R.N., Aksu, A.E., Mudie, P.J., Marret, F., Abrajano, T., Kaminski, M.A., Evans, J., Çakiroğlu, A.I., Yaşar, D., 2007. A gradual drowning of the southwestern Black Sea shelf: evidence for a progressive rather than abrupt Holocene reconnection with the eastern Mediterranean Sea through the Marmara Sea Gateway. Quaternary International 167–168, 1934.CrossRefGoogle Scholar
Ivanova, E., Schornikov, E., Marret, F., Murdmaa, I., Zenina, M., Aliev, R., Bradley, L., et al., 2014. Environmental changes on the inner northeastern Black Sea shelf, off the town of Gelendzhik, over the last 140 years. Quaternary International 328–329, 338348.Google Scholar
Ivanova, E.V., Marret, F., Zenina, M.A., Murdmaa, I.O., Chepalyga, A.L., Bradley, L.R., Schornikov, E.I., Levchenko, O.V., Zyryanova, M.I., 2015. The Holocene Black Sea reconnection to the Mediterranean Sea: new insights from the northeastern Caucasian shelf. Palaeogeography, Palaeoclimatology, Palaeoecology 427, 4161.CrossRefGoogle Scholar
Ivanova, E.V., Murdmaa, I.O., Chepalyga, A.L., Cronin, T.M., Pasechnik, I.V., Levchenko, O.V., Howe, S.S., Manushkina, A.V., Platonova, E.A., 2007. Holocene sea-level oscillations and environmental changes on the eastern Black Sea shelf. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 228259.Google Scholar
Ivanova, E.V., Murdmaa, I.O., Karpuk, M.S., Schornikov, E.I., Marret, F., Cronin, T.M., Buynevich, I.V., Platonova, E.A., 2012. Paleoenvironmental changes on the northeastern and southwestern Black Sea shelves during the Holocene. Quaternary International 261, 91104.Google Scholar
Kosarev, A.N., 2005. Physico-geographical conditions of the Caspian Sea. In: Kostianoy, A.G., Kosarev, A.N. (Eds.), The Caspian Sea Environment. Springer, Berlin, pp. 531.Google Scholar
Kvavadze, E.V., Connor, S.E., 2005. Zelkova carpinifolia (Pallas) K. Koch in Holocene sediments of Georgia—an indicator of climatic optima. Review of Palaeobotany and Palynology 133, 6989.Google Scholar
Leroy, S.A.G., López-Merino, L., Tudryn, A., Chalié, F., Gasse, F., 2014. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core. Quaternary Science Reviews 101, 91110.Google Scholar
Likhodedova, O., Konikov, E.G., 2007. Analysis of sea-level changes in the Black Sea for the past 140 years and forecast for the future. In: Extended Abstracts: IGCP 521-481 Joint Meeting and Field Trip. IGCP 521 “Black Sea-Mediterranean Corridor during the Last 30 ky: Sea-Level Change and Human Adaptation (2005-2009).” IGCP 481 “Dating Caspian Sea Level Change (2003-2007).” Gelendzhik, Russia, Southern Branch of P.P. Shirshov Institute of Oceanology; Kerch, Ukraine, Beneficent Foundation “Demetra,” pp. 109–111.Google Scholar
Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S.O., Ülgen, U.B., Niessen, F., 2009. ‘PALEOVAN’, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews 28, 15551567.Google Scholar
Mandelstam, M.I., Markova, L., Rosyeva, T., Stepanaitys, N., 1962. Ostrakody pliotsenovikh I poslepliotsenovikh otlojeniy Turkmenistana [Ostracoda of the Pliocene and post-Pliocene deposits of Turkmenistan]. Geologicheskiy Institut Turkmenistana, Ashkhabad, Turkmenistan.Google Scholar
Marret, F., Mudie, P., Aksu, A., Hiscott, R.N., 2009. A Holocene dinocyst record of a two-step transformation of the Neoeuxinian brackish water lake into the Black Sea. Quaternary International 197, 7286.Google Scholar
Mauri, A., Davies, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.Google Scholar
Mertens, K.N., Bradley, L.R., Takano, Y., Mudie, P.J., Marret, F., Aksu, A.E., Hiscott, R.N., et al., 2012. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length. Quaternary Science Reviews 39, 4559.Google Scholar
Morduhai-Boltovkoy, F.D., 1960. Caspian Fauna of the Azov Black Seas Basin. [In Russian.] Academy of Science, USSR, Moscow.Google Scholar
Mudie, P.J., Marret, F., Aksu, A.E., Hiscott, R.N., Gillespie, H., 2007. Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quaternary International 167–168, 7390.CrossRefGoogle Scholar
Mudie, P.J., Rochon, A., Aksu, A.E., Gillespie, H., 2002. Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black seas. Marine Geology 190, 203231.Google Scholar
Murray, J.W., 1991. Hydrographic variability in the Black Sea. In: Izdar, E., Murray, J.W. (Eds.), Black Sea Oceanography. NATO ASI Series, Series C: Mathematical and Physical Science 351. Kluwer Academic, London, pp. 116.Google Scholar
Nevesskaya, L.A., 1965. Pozdnechetvertichniye Dvustvorchatie Molluski Chernogo Morya, ih Sistematika i Ecologia [Late Quaternary Bivalvia of the Black Sea, their systematics and ecology]. Nauka, Moscow.Google Scholar
Nicholas, W.A., Chivas, A.R., Murray-Wallace, C.V., Fink, D., 2011. Prompt transgression and gradual salinisation of the Black Sea during the early Holocene constrained by amino acid racemization and radiocarbon dating. Quaternary Science Reviews 30, 37693790.Google Scholar
Öğuz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V., Ünlüata, Ü., 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I. Oceanographic Research Papers 40(8), 15971612.Google Scholar
Opreanu, P.A., 2008. Ostracode relicte ponto-caspice în sectorul românesc al Mării Negre [Ponto-Caspian relic Ostracoda from Romanian sector of the Black Sea]. Geo-Eco-Marina 14(S1), 5762.Google Scholar
Ryan, W.B.F., Major, C.O., Lericolais, G., Goldstein, S.L., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences 31, 525554.Google Scholar
Ryan, W.B.F., Pitman, W.C. III, Major, C.O., Shimkus, K., Moskalenko, V., Jones, G.A., Dimitrov, P., Gorür, N., Sakinç, M., Yüce, H., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119126.Google Scholar
Schornikov, E.I., 1969. Subclass Ostracoda, shelled Crustacea—Ostracoda. In: Vodyanitsky, V.A. (Ed.), Opredelitel’ fauny Chernogo i Azovskogo morey, tom 2, Rakoobraznye [Key to the fauna of the Black and Azov Seas, 2. Free living invertebrates—Crustacea]. Naukova Dumka, Kiev, pp. 163260.Google Scholar
Schornikov, E.I., 2011. Ostracoda of the Caspian origin in the Azov-Black seas basin. Joannea Geologie & Paläontologie 11, 180184.Google Scholar
Schornikov, E.I., 2012. New species of ostracods to Black and the Azov seas fauna. [In Russian.] Modern Micropaleontology: Proceedings of the XV All-Russian Micropaleontological Meeting, Moscow, pp. 257260.Google Scholar
Schornikov, E.I., Zenina, M.A., 2014. Ostracods as Indicators of Conditions and Dynamics of Water Ecosystems (on the Example of the Peter the Great Bay, Sea of Japan). [In Russian.] Dal’nauka, Vladivostok Russia.Google Scholar
Schornikov, E.I., Zenina, M.A., Ivanova, E.V., 2014. Ostracods as indicators of the aquatic environmental conditions on the northeastern Black Sea shelf over the past 70 years. [In Russian with English translation.] Russian Journal of Marine Biology 40(6), 455464.Google Scholar
Shumilovskikh, L.S., Marret, F., Fleitmann, D., Arz, H.W., Nowaczyk, N., Behling, H., 2013. Eemian and Holocene sea-surface conditions in the southern Black Sea: organic-walled dinoflagellate cyst record from core 22-GC3. Marine Micropaleontology 101, 146160.Google Scholar
Shumilovskikh, L.S., Tarasov, P., Arz, H.W., Fleitmann, D., Marret, F., Nowaczyk, N., Plessen, B., Schlütz, F., Behling, H., 2012. Vegetation and environmental dynamics in the southern Black Sea region since 18 kyr BP derived from the marine core 22-GC3. Palaeogeography, Palaeoclimatology, Palaeoecology 337–338, 177193.Google Scholar
Sorokin, Y.I., 2002. The Black Sea: Ecology and Oceanography. Backhuys, Leiden, the Netherlands.Google Scholar
Soulet, G., Ménot, G., Garreta, V., Rostek, F., Zaragosi, S., Lericolais, G., Bard, E., 2011. Black Sea “Lake” reservoir age evolution since the Last Glacial—hydrologic and climatic implications. Earth and Planetary Science Letters 308, 245258.Google Scholar
Soulet, G., Ménot, G., Lericolais, G., Bard, E., 2011. A revised calendar age for the last reconnection of the Black Sea to the global ocean. Quaternary Science Reviews 30, 10191026.Google Scholar
Stancheva, M., 1989a. Holocene ostracod zones of the western Black Sea shelf. Geologica Balcanica 19(3), 9195.Google Scholar
Stancheva, M., 1989b. Taxonomy and biostratigraphy of the Pleistocene ostracods of the western Black Sea shelf. Geologica Balcanica 19(6), 339.Google Scholar
Torgunakov, A.V., Merklin, L.R., Shimkus, K.M., Moscalenko, V.N., Lobkovsky, L.I., 2002. New notion of structure of the Caucasian shelf between Arhipo-Osipovka and Dzhubga based on fine resolution seismo-acoustic profiling data. In: Zatsepin, A.G., Flint, M.V. (Eds.), Multidisciplinary Investigations of the Northeastern Part of the Black Sea. [In Russian.] Nauka, Moscow, pp. 358367.Google Scholar
Verleye, T.J., Mertens, K.N., Louwye, S., Arz, H.W., 2009. Holocene salinity changes in the southwestern Black Sea: a reconstruction based on dinoflagellate cysts. Palynology 33, 77100.Google Scholar
Wick, L., Lemcke, G., Sturm, M., 2003. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13, 665675.Google Scholar
Williams, L.R, Hiscott, R.N., Aksu, A.E., 2011. Holocene paleoecology of the southwestern Black Sea shelf using ostracods as proxies. Joannea Geologie & Paläontologie 11, 216219.Google Scholar
Yanina, T.A., 2014. The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene. Quaternary International 345, 8899.Google Scholar
Yanko, V.V., Troitskaya, T.S., 1987. Pozdnechetvertichnye foraminifery Chernogo moria [Late Quaternary foraminifera of the Black Sea]. Nauka, Moscow.Google Scholar
Yanko-Hombach, V., Gilbert, A.S., Dolukhanov, P.M., 2007. Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence. Quaternary International 167–168, 91113.Google Scholar
Yanko-Hombach, V., Mudie, P.J., Kadurin, S., Larchenkov, E., 2014. Holocene marine transgression in the Black Sea: new evidence from the northwestern Black Sea shelf. Quaternary International 345, 100118.Google Scholar
Zenina, M.A., Schornikov, E.I., Ivanova, E.V., Bradley, L.R., Marret, F., 2013. The Holocene ostracods from the northeastern Black Sea shelf as indicators of environmental changes. Naturalista siciliano 37(1), 461463.Google Scholar
Supplementary material: PDF

Zenina supplementary material S1

Zenina supplementary material

Download Zenina supplementary material S1(PDF)
PDF 606 KB
Supplementary material: PDF

Zenina supplementary material S2

Zenina supplementary material

Download Zenina supplementary material S2(PDF)
PDF 581 KB
Supplementary material: PDF

Zenina supplementary material S3

Zenina supplementary material

Download Zenina supplementary material S3(PDF)
PDF 184.8 KB
Supplementary material: File

Zenina supplementary material S4

Zenina supplementary material

Download Zenina supplementary material S4(File)
File 26.2 KB
Supplementary material: File

Zenina supplementary material Captions

Supplementary material Captions

Download Zenina supplementary material Captions(File)
File 32.4 KB