Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T05:51:06.385Z Has data issue: false hasContentIssue false

Millennial- to centennial-scale climate periodicities and forcing mechanisms in the westernmost Mediterranean for the past 20,000 yr

Published online by Cambridge University Press:  20 January 2017

Marta Rodrigo-Gámiz*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas-Universidad de Granada (CSIC-UGR), Granada, Spain NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, Den Burg, Texel, The Netherlands
Francisca Martínez-Ruiz
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas-Universidad de Granada (CSIC-UGR), Granada, Spain
Francisco J. Rodríguez-Tovar
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain
Francisco J. Jiménez-Espejo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas-Universidad de Granada (CSIC-UGR), Granada, Spain Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
Eulogio Pardo-Igúzquiza
Affiliation:
Instituto Geológico y Minero de España (IGME), Madrid, Spain
*
*Corresponding author at: NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands. Fax: + 31 222 319 674. E-mail address:Marta.Rodrigo@nioz.nl (M. Rodrigo-Gámiz).

Abstract

Cyclostratigraphic analysis conducted on a continuous high-resolution marine record from the western most Mediterranean reveals well-identified paleoclimate cycles for the last 20,000 yr. The detrital proxies used (Si/Al, Ti/Al, Zr/Al, Mg/Al, K/Al, Rb/Al) are related to different sediment-transport mechanisms, including eolian dust and fluvial runoff, which involve fluctuations in the atmosphere–hydrosphere systems. These fluctuations are accompanied by changes in marine productivity (supported by Ba/Al) and bottom-water redox conditions (Cu/Al, V/Al, Zn/Al, Fe/Al, Mn/Al, U/Th). Spectral analysis conducted using the Lomb–Scargle periodogram and the achieved significance level implemented with the permutation test allowed us to establish major periodicities at 1300, 1515, 2000, and 5000 yr, and secondary peaks at 650, 1087, and 3000 yr. Some of these cycles also agree with those previously described in the North Atlantic Ocean and circum-Mediterranean records. The periodicities obtained at 2000 and 5000 yr support a global connection with records distributed at high, mid, and low latitudes associated with solar activity, monsoonal regime and orbital forcing. The 1300- and 1515-yr cycles appear to be linked with North Atlantic climate variability and the African monsoon system. Thus, the analyzed record provides evidence of climate cycles and plausible forcing mechanisms coupled with ocean–atmosphere fluctuations.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassetti, M.-A., Carbonel, P., Sierro, F.J., Perez-Folgado, M., Jouët, G., and Berné, S. Response of ostracods to abrupt climate changes in the Western Mediterranean (Gulf of Lion) during the last 30 kyr. Marine Micropaleontology 77, (2010). 114.CrossRefGoogle Scholar
Bea, F. Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. Journal of Petrology 37, (1996). 521532.CrossRefGoogle Scholar
Becker, J., Lourens, L.J., Hilgen, F.J., van der Laan, E., Kouwenhoven, T.J., and Reichart, G.J. Late Pliocene climate variability on Milankovitch to millennial time scales: a high-resolution study of MIS100 from the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 228, (2005). 338360. http://dx.doi.org/10.1016/j.palaeo.2005.06.020CrossRefGoogle Scholar
Berger, A., Loutre, M.F., and Mélice, J.L. Equatorial insolation: from precession harmonics to eccentricity frequencies. Climate of the Past 2, (2006). 131136. (http://www.clim-past.net/2/131/2006/)CrossRefGoogle Scholar
Berner, K.S., Koc, N., Godtliebsen, F., and Divine, D. Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. Paleoceanography 26, (2011). PA2220 http://dx.doi.org/10.1029/2010PA002002CrossRefGoogle Scholar
Bianchi, G.G., and McCave, N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397, (1999). 515517.CrossRefGoogle Scholar
Blanchet, C.L., Tjallingii, R., Frank, M., Lorenzen, J., Reitz, A., Brown, K., Feseker, T., and Brückmann, W. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan. Earth and Planetary Science Letters 364, (2013). 98110.CrossRefGoogle Scholar
Bond, G., and Lotti, R. Iceberg discharges into North Atlantic on millennial time scales during the last glaciation. Science 267, (1995). 10051010.CrossRefGoogle ScholarPubMed
Bond, G., Heinrich, H., Broecker, W.S., Labeyrie, L., McManus, J., Andrews, J.T., Huon, S., Jantschik, R., Clasen, S., Simet, C. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, (1992). 245249.CrossRefGoogle Scholar
Bond, G., Broecker, W.S., Johnsen, S.J., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143147.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278, (1997). 12571266.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302135.CrossRefGoogle ScholarPubMed
Böttcher, M.E., Rinna, J., Warning, B., Wehausen, R., Howell, M.W., Schnetger, B., Stein, R., Brumsack, H.-J., and Rullkoetter, J. Geochemistry of sediments from the connection between the western and the eastern Mediterranean Sea (Strait of Sicily, ODP Site 963). Palaeogeography, Palaeoclimatology, Palaeoecology 190, (2003). 165194.CrossRefGoogle Scholar
Broecker, W.S. Massive iceberg discharges as triggers for global climate change. Nature 372, (1994). 421424.CrossRefGoogle Scholar
Broecker, W.S. Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Science Reviews 51, (2000). 137154.CrossRefGoogle Scholar
Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology 232, (2006). 344361.CrossRefGoogle Scholar
Brumsack, H.-J., and Wehausen, R. A geochemical record of precession-induced cyclic eastern Mediterranean sedimentation: implications for northern Sahara humidity during the Pliocene. Naturwissenschaften 86, (1999). 281286.CrossRefGoogle Scholar
Bütikofer, J. Millennial Scale Climate Variability During the Last 6000 years—Tracking Down the Bond Cycles. (Diploma thesis) (2007). University of Bern, Switzerland. (http://www.giub.unibe.ch/klimet/docs/diplom_jbuetikofer.pdf)Google Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., and Shackleton, N.J. Dansgaard–Oeschger and Heinrich event imprints in the Alboran Sea paleotemperatures. Paleoceanography 14, (1999). 698705.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Sierro, F.J., Shackleton, N.J., and Canals, M. Evidences for enhanced Mediterranean thermohaline circulation during rapid climatic coolings. Earth and Planetary Science Letters 183, (2000). 417429.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J., and Zahn, R. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, (2001). 4052.CrossRefGoogle Scholar
Cai, Y.J., Tan, L.C., Cheng, H., An, Z.S., Edwards, R.L., Kelly, M.J., Kong, X.G., and Wang, X.F. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters 291, (2010). 2131.CrossRefGoogle Scholar
Calvert, S.E., and Pedersen, T.F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Hillaire-Marcel, C., and De Vernal, A. Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology. (2007). Elsevier, Oxford, UK. 567644.Google Scholar
Cartes, J.E., Maynou, F., and Fanelli, E. Nile damming as plausible cause of extinction and drop in abundance of deep-sea shrimp in the western Mediterranean over broad spatial scales. Progress in Oceanography 91, (2011). 286294.CrossRefGoogle Scholar
Chen, W., Dong, B., and Lu, R. Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. Journal of Geophysical Research 115, (2010). D17109 http://dx.doi.org/10.1029/2009JD013596CrossRefGoogle Scholar
Chester, R., Baxter, G.G., Behairy, A.K.A., Connor, K., Cross, D., Elderfield, H., and Padgham, R.C. Soil-sized eolian dusts from the lower troposphere of the eastern Mediterranean Sea. Marine Geology 24, (1977). 201217.CrossRefGoogle Scholar
Chondrogianni, C., Ariztegui, D., Rolph, T., Juggins, S., Shemesh, A., Rietti-Shati, M., Niessen, F., Guilizzoni, P., Lami, A., McKenzie, J.A. et al. Millennial to interannual climate variability in the Mediterranean during the Last Glacial Maximum. Quaternary International 122, (2004). 3141.CrossRefGoogle Scholar
Comas, M.C., and Ivanov, M.K. Alboran basin (Leg 3), in interdisciplinary geoscience research on the North East Atlantic margin, Mediterranean Sea and Mid-Atlantic Ridge. Kenyon, H., Ivanov, M.K., Akhmetzhanov, A.M., Akhmanov, G.G. IOC Technical Series (2003). UNESCO, 5171.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.CrossRefGoogle Scholar
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J.F., Massei, N., Sebag, D., Petit, J.R., Copard, Y., and Trentesaux, A. The origin of the 1500-year climate cycles in Holocene north-atlantic records. Climate of the Past 3, (2007). 569575. (www.clim-past.net/3/569/2007/)CrossRefGoogle Scholar
Debret, M., Sebag, D., Crosta, X., Massei, N., Petit, J.R., Chapron, E., and Bout-Roumazeilles, V. Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quaternary Science Reviews 28, (2009). 26752688.CrossRefGoogle Scholar
Dehairs, F., Lambert, C.E., Chesselet, R., and Risler, N. The biological production of marine suspended barite and the barium cycle in the Western Mediterranean Sea. Biogeochemistry 4, (1987). 119140.CrossRefGoogle Scholar
deMenocal, P.B., and Rind, D. Sensitivity of Asian and African monsoon climate to variations in seasonal insolation, glacial ice cover, sea surface temperature and Asian orography. Journal of Geophysical Research 98, (1993). 72657287.CrossRefGoogle Scholar
deMenocal, P.B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347361.CrossRefGoogle Scholar
Denton, G.H., and Karlen, W. Holocene climatic variations–their pattern and possible cause. Quaternary Research 3, (1973). 155205.CrossRefGoogle Scholar
Fernández de Puelles, M.L., Alemany, F., and Jansá, J. Zooplankton time-series in the Balearic Sea (Western Mediterranean): variability during the decade 1994–2003. Progress in Oceanography 74, (2007). 329354.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300, (2003). 17371739.CrossRefGoogle Scholar
Fletcher, W.J., Debret, M., and Sanchez Goñi, M.F. Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23, (2013). 153166. http://dx.doi.org/10.1177/0959683612460783CrossRefGoogle Scholar
Foucault, A., and Mélières, F. Palaeoclimatic cyclicity in central Mediterranean Pliocene sediments: the mineralogical signal. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 311323.CrossRefGoogle Scholar
Gaetani, M., Fontaine, B., Roucou, P., and Baldi, M. Influence of the Mediterranean Sea on the West African monsoon: intraseasonal variability in numerical simulations. Journal of Geophysical Research Atmospheres 115, (2010). D24115 http://dx.doi.org/10.1029/2010JD014436CrossRefGoogle Scholar
Gallego-Torres, D., Martínez-Ruiz, F., Paytan, A., Jiménez-Espejo, F.J., and Ortega-Huertas, M. Pliocene–Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 424439.CrossRefGoogle Scholar
Gallego-Torres, D., Martínez-Ruiz, F., Meyers, P.A., Paytan, A., Jiménez-Espejo, F.J., and Ortega-Huertas, M. Productivity patterns and N-fixation associated with Pliocene-Holocene sapropels: Paleoceanographic and paleoecological significance. Biogeosciences 8, (2011). 415431. www.biogeosciences.net/8/415/2011/ CrossRefGoogle Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.CrossRefGoogle Scholar
Grootes, P., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution. Journal of Geophysical Research 102, (1997). 2645526470.CrossRefGoogle Scholar
Grousset, F.E., Buat-Menard, P., Boust, D., Tian, R.C., Baudel, S., Pujol, C., and Vergnaud-Grazzini, C. Temporal changes of aeolian Saharan input in the Cape Verde abyssal plain since that last Glacial period. Oceanologica Acta 12, (1989). 177185.Google Scholar
Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., and Huon, S. Patterns of ice-rafted detritus in the glacial North Atlantic (40–55°N). Paleoceanography 8, (1993). 175192.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, (2001). 13041308.CrossRefGoogle ScholarPubMed
Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, (1988). 142152.CrossRefGoogle Scholar
Jiménez-Espejo, F.J., Martínez-Ruiz, F., Sakamoto, T., Iijima, K., Gallego-Torres, D., and Harada, N. Paleoenvironmental changes in the western Mediterranean since the Last Glacial Maximum: high resolution multiproxy record from the Algero–Balearic basin. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 292306. http://dx.doi.org/10.1016/j.palaeo.2006.10.005CrossRefGoogle Scholar
Jiménez-Espejo, F.J., Martínez-Ruiz, F., Rogerson, M., González-Donoso, J.M., Romero, O.E., Linares, D., Sakamoto, T., Gallego-Torres, D., Ruiz, J.L.R., Ortega-Huertas, M. et al. Detrital input, productivity fluctuations, and water mass circulation in the westernmost Mediterranean Sea since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems 9, (2008). Q11U02 http://dx.doi.org/10.1029/2008GC002096CrossRefGoogle Scholar
Jiménez-Moreno, G., Aziz, H.A., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., and Suc, J.P. Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 252, (2007). 601616.CrossRefGoogle Scholar
Kloosterboer-Van Hoeve, M.L., Steenbrink, J., Visscher, H., and Brinkhuis, H. Millennial-scale climatic cycles in the Early Pliocene pollen record of Ptolemais, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 229, (2006). 321334.CrossRefGoogle Scholar
Kodera, K., and Kuroda, Y. A possible mechanism of solar modulation of the spatial structure of the North Atlantic oscillation. Journal of Geophysical Research 110, (2005). D02111 http://dx.doi.org/10.1029/2004JD005258CrossRefGoogle Scholar
Kuhlmann, H., Meggers, H., Freudenthal, T., and Wefer, G. The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophysical Research Letters 31, (2004). L22204 http://dx.doi.org/10.1029/2004GL021267 (2004) CrossRefGoogle Scholar
Kutzbach, J., Bonan, G., Foley, J., and Harrison, S.P. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, (1996). 623626.CrossRefGoogle Scholar
Lee, S.-Y., Chiang, J.C.H., Matsumoto, K., and Tokos, K.S. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: modeling perspective and paleoceanographic implications. Paleoceanography 26, (2011). PA1214 http://dx.doi.org/10.1029/2010PA002004CrossRefGoogle Scholar
Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science 39, (1976). 447462.CrossRefGoogle Scholar
Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., and Yu, Z.C. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, (2008). 617.CrossRefGoogle Scholar
Mangini, A., Jung, M., and Laukenmann, S. What do we learn from peaks of uranium and of manganese in deep sea sediments?. Marine Geology 177, (2001). 6378.CrossRefGoogle Scholar
Mangini, A., Verdes, P., Spötl, C., Scholz, D., Vollweiler, N., and Kromer, B. Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years. Geophysical Research Letters 34, (2007). L02704 http://dx.doi.org/10.1029/2006GL028600CrossRefGoogle Scholar
Marchitto, T.M., Muscheler, R., Ortiz, J.D., Carriquiry, J.D., and Van Geen, A. Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene. Science 330, (2010). 13781381.CrossRefGoogle ScholarPubMed
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., Hurrell, J., McCartney, M., Saravanan, R., and Visbeck, M. North Atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology 21, (2001). 18631898.CrossRefGoogle Scholar
Martínez-Ruiz, F., Kastner, M., Paytan, A., Ortega-Huertas, M., and Bernasconi, S.M. Geochemical evidence for enhanced productivity during S1 sapropel deposition in the eastern Mediterranean. Paleoceanography 15, (2000). 200209.CrossRefGoogle Scholar
Martínez-Ruiz, F., Paytan, A., Kastner, M., González-Donoso, J.M., Linares, D., Bernasconi, S.M., and Jiménez-Espejo, F.J. A comparative study of the geochemical and mineralogical characteristics of the S1 sapropel in the western and eastern Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 190, (2003). 2337.CrossRefGoogle Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H., and Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306, (2004). 17621765.CrossRefGoogle ScholarPubMed
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., and Stocker, T.F. Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317, (2007). 502507.CrossRefGoogle ScholarPubMed
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Qinzhao, Y., Berry Lyons, W., and Prentice, M. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110 000-year-long glaciochemical series. Journal of Geophysical Research 102, (1997). 2634526366.CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K. et al. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
McGowan, H.A., Marx, S.K., Soderholm, J., and Denholm, J. Evidence of solar and tropical-ocean forcing of hydroclimate cycles in southeastern Australia for the past 6500 years. Geophysical Research Letters 37, (2010). L10705 http://dx.doi.org/10.1029/2010GL042918CrossRefGoogle Scholar
Meunier, A., and Velde, B. Illite: Origins, Evolution and Metamorphism. (2004). Springer-Verlag, Berlin.Google Scholar
Moreno, A., Cacho, I., Canals, M., Grimalt, J.O., and Sanchez-Vidal, A. Millennial-scale variability in the productivity signal from the Alboran Sea record, Western Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 211, (2004). 205219.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Grimalt, J.O., Sánchez-Goñi, M.F., Shackleton, N., and Sierro, F.J. Links between marine and atmospheric processes oscillating on a millennial time-scale. A multi-proxy study of the last 50,000 yr from the Alboran Sea (Western Mediterranean Sea). Quaternary Science Reviews 24, (2005). 16231636.CrossRefGoogle Scholar
Nagao, S., and Nakashima, S. Possible complexation of uranium with dissolved humic substances in pore water of marine-sediments. Science of the Total Environment 118, (1992). 439447.CrossRefGoogle Scholar
Naughton, F., Sánchez Goñi, M.F., Kageyama, M., Bard, E., Duprat, J., Cortijo, E., Desprat, S., Malaizé, B., Joly, C., Rostek, F. et al. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters 284, (2009). 329342.CrossRefGoogle Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., and Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, (1995). 19621964.CrossRefGoogle Scholar
Obrochta, S.P., Miyahara, H., Yokoyama, Y., and Crowley, T.J. A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quaternary Science Reviews 55, (2012). 2333.CrossRefGoogle Scholar
Packard, T.T., Minas, H.J., Coste, B., Martínez, R., Bonin, M.C., Gostan, J., Garfield, P., Christensen, J., Dortch, Q., Minas, M. et al. Formation of the Alboran oxygen minimum zone. Deep Sea Research Part A, Oceanographic Research Papers 35, (1988). 11111118.CrossRefGoogle Scholar
Pardo-Igúzquiza, E., and Rodríguez-Tovar, F.J. The permutation test as a non-parametric method for testing the statistical significance of power spectrum estimation in cyclostratigraphic research. Earth and Planetary Science Letters 181, (2000). 175189.CrossRefGoogle Scholar
Pardo-Igúzquiza, E., and Rodríguez-Tovar, F.J. MAXENPER: a program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test. Computers & Geosciences 31, (2005). 555567.CrossRefGoogle Scholar
Pardo-Igúzquiza, E., and Rodríguez-Tovar, F.J. Implemented Lomb-Scargle periodogram: a valuable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences. Geo-Marine Letters 31, (2011). 537545.CrossRefGoogle Scholar
Pardo-Igúzquiza, E., and Rodríguez-Tovar, F.J. Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb–Scargle periodogram and Monte Carlo evaluation of statistical significance. Computers and Geology 49, (2012). 207216.Google Scholar
Pardo-Igúzquiza, E., and Rodríguez-Tovar, F.J. Análisis espectral de series temporales de variables geológicas con muestreo irregular. Boletín Geológico y Minero 124, 2 (2013). 319333.Google Scholar
Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J.C., and Thiede, J. Late Quaternary climatic changes in western tropical Africa deduced from deep-sea sedimentation off the Niger delta. Oceanologica Acta 1, (1978). 217232.Google Scholar
Paytan, A., Martínez-Ruiz, F., Eagle, M., Ivy, A., and Wankel, S.D. Using sulfur isotopes to elucidate the origin of barite associated with high organic matter accumulation events in marine sediments. Geological Society of America Special Papers 379, (2004). 151160.Google Scholar
Powell, W.G., Johnston, P.A., and Collom, C.J. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201, (2003). 249268.CrossRefGoogle Scholar
Pye, K. Aeolian Dust and Dust Deposits. (1987). Academic Press, San Diego, California.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeye, C.E. INTCAL09 and MARINE09 radiocarbon age calibration curve, 0–50,000 years cal BP. Radiocarbon 51, 4 (2009). 11111150.CrossRefGoogle Scholar
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Jiménez-Espejo, F.J., Gallego-Torres, D., Nieto-Moreno, V., Romero, O., and Ariztegui, D. Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quaternary Science Reviews 30, (2011). 20182034.CrossRefGoogle Scholar
Rodríguez-Tovar, F.J., Reolid, M., and Pardo-Igúzquiza, E. Planktonic versus benthic foraminifera response to Milankovitch forcing (Late Jurassic, Betic Cordillera): testing methods for cyclostratigraphic analysis. Facies 56, (2010). 459470.CrossRefGoogle Scholar
Rogerson, M., Rohlin, E.J., and Weaver, P.P.E. Promotion of meridional overturning by Mediterranean-derived salt during the last deglaciation. Paleoceanography 21, (2006). PA4101 http://dx.doi.org/10.1029/2006PA001306 (2006) CrossRefGoogle Scholar
Rogerson, M., Cacho, I., Jiménez-Espejo, F., Reguera, M.I., Sierro, F.J., Martínez-Ruiz, F., Frigola, J., and Canals, M. A dynamic explanation for the origin of the western Mediterranean organic-rich layers. Geochemistry, Geophysics, Geosystems 9, (2008). Q07U01 http://dx.doi.org/10.1029/2007GC001936CrossRefGoogle Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R., Casford, J., and Hayes, A. Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 587593.Google Scholar
Rutten, A., and de Lange, G.J. Sequential extraction of iron, manganese and related elements in S1 sapropel sediments, eastern Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 190, (2003). 79101.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., and Duprat, J. Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, (2008). 11361151.CrossRefGoogle Scholar
Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., and Burr, O.S. High resolution Holocene monsoon record from the eastern Arabian Sea. Earth and Planetary Science Letters 177, (2000). 209218.CrossRefGoogle Scholar
Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal 263, (1982). 835853.CrossRefGoogle Scholar
Shackleton, N.J., Hall, M.A., and Vincent, E. Phase relationship between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, (2000). 565569.CrossRefGoogle Scholar
Sierro, F.J., Hodell, D.A., Curtis, J.H., Flores, J.A., Reguera, I., Colmenero-Hidalgo, E., Bárcena, M.A., Grimalt, J.O., Cacho, I., Frigola, J. et al. Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events. Paleoceanography 20, (2005). PA2019 http://dx.doi.org/10.1029/2004PA001051CrossRefGoogle Scholar
Sirocko, F. Past and present subtropical summer monsoons. Science 274, (1996). 937938.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schönberg, D., McIntyre, A., and Molfino, B. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272, (1996). 526529.CrossRefGoogle Scholar
Skliris, N., Sofianos, S., and Lascaratos, A. Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: a numerical modelling study. Journal of Marine Systems 65, (2007). 400416.CrossRefGoogle Scholar
Sparnocchia, S., Manzella, G.M.R., and La Violette, P.E. The interannual and seasonal variability of the MAW and LIW core properties in the Western Mediterranean Sea. La Violette, P.E. Seasonal and Interannual Variability of the Western Mediterranean Sea. Coastal and Estuarine Studies 46, (1994). AGU, Washington, D.C.. 177194.CrossRefGoogle Scholar
Sprovieri, M., Di Stefano, E., Incarbona, A., Salvagio Manta, D., Pelosi, N., Ribera d'Alcalà, M., and Sprovieri, R. Centennial- to millennial-scale climate oscillations in the Central-Eastern Mediterranean Sea between 20,000 and 70,000 years ago: evidence from a high-resolution geochemical and micropaleontological record. Quaternary Science Reviews 46, (2012). 126135.CrossRefGoogle Scholar
Stocker, T.F. Past and future reorganizations in the climate system. Quaternary Science Reviews 19, (2000). 301319.CrossRefGoogle Scholar
Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 430, (2004). 5659.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Stuiver, M., Grootes, P.M., and Braziunas, T.F. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, (1995). 341354.CrossRefGoogle Scholar
Thomson, J., Higgs, N.C., Wilson, T.R.S., Croudace, I.W., de Lange, G.J., and Van Santvoort, P.J.M. Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochimica et Cosmochimica Acta 59, (1995). 34873501.CrossRefGoogle Scholar
Tierney, J.E., and Russell, J.M. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophysical Research Letters 34, (2007). L15709 http://dx.doi.org/10.1029/2007GL029508CrossRefGoogle Scholar
Toucanne, S., Mulder, T., Schönfeld, J., Hanquiez, V., Gonthier, E., Duprat, J., Cremer, M., and Zaragosi, S. Contourites of the Gulf of Cadiz: a high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 354366.CrossRefGoogle Scholar
Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, (2006). 1232.CrossRefGoogle Scholar
Trigo, R.M., Osborn, T.J., and Corte-Real, J.M. The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research 20, (2002). 917.CrossRefGoogle Scholar
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., and Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, (2009). 7880.CrossRefGoogle ScholarPubMed
Tuenter, E., Weber, S.L., Hilgen, F.J., and Lourens, L.J. Simulating sub-Milankovitch climate variations associated with vegetation dynamics. Climate of the Past 3, (2007). 169180. (www.clim-past.net/3/169/2007/)CrossRefGoogle Scholar
van Geel, B., Raspopov, O.M., Renssen, H., Van der Plicht, J., Dergachev, V.A., and Meijer, H.A.J. The role of solar forcing upon climate change. Quaternary Science Reviews 18, (1999). 331338.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., and Fines, P. Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research 111, (2006). D09102 http://dx.doi.org/10.1029/2005JD006031CrossRefGoogle Scholar
Voelker, A.H.L., Lebreiro, S.M., Schönfeld, J., Cacho, I., Erlenkeuser, H., and Abrantes, F. Mediterranean outflow strengthening during northern hemisphere coolings: a salt source for the glacial Atlantic?. Earth and Planetary Science Letters 245, (2006). 3955.CrossRefGoogle Scholar
von Grafenstein, R., Zahn, R., Tiedemann, R., and Murat, A. Planktonic δ18O records at sites 976 and 977, Alboran Sea: stratigraphy, forcing, and paleoceanographic implications. Zahn, R., Comas, M.C., Klaus, A. Proceedings of the Ocean Drilling Program (ODP), Scientific Results 161, (1999). Ocean Drilling Program, College Station, TX. 469479.Google Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grootes, P.M., Grimalt, J.O., Pelejero, C., and Linck, G. Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophysical Research Letters 26, (1999). 28892892.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., and Dorale, J.A. A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D.B., and Xoplaki, E. North Atlantic Oscillation — concepts and studies. Surveys in Geophysics 22, (2001). 321382.CrossRefGoogle Scholar
Weber, S.L., Crowley, T.J., and van der Schrier, G. Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics 22, (2004). 539553.CrossRefGoogle Scholar
Wehausen, R., and Brumsack, H.J. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 325352.CrossRefGoogle Scholar