Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-07T19:24:02.740Z Has data issue: false hasContentIssue false

Little Ice Age fluctuations of Glaciar Río Manso in the North Patagonian Andes of Argentina

Published online by Cambridge University Press:  20 January 2017

M.H. Masiokas*
Affiliation:
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET, Mendoza, Argentina
B.H. Luckman
Affiliation:
Department of Geography, University of Western Ontario, London, Ontario, Canada
R. Villalba
Affiliation:
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET, Mendoza, Argentina
A. Ripalta
Affiliation:
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT-CONICET, Mendoza, Argentina
J. Rabassa
Affiliation:
Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
*
*Corresponding author. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT Mendoza-CONICET, C.C. 330, 5500, Mendoza, Argentina. Fax: +54 261 524 4201. E-mail address:mmasiokas@mendoza-conicet.gov.ar

Abstract

Little Ice Age (LIA) fluctuations of Glaciar R"o Manso, north Patagonian Andes, Argentina are studied using information from previous work and dendrogeomorphological analyses of living and subfossil wood. The most extensive LIA expansion occurred between the late 1700s and the 1830"1840s. Except for a massive older frontal moraine system apparently predating ca. 2240 14C yr BP and a small section of a south lateral moraine ridge that is at least 300 yr old, the early nineteenth century advance overrode surficial evidence of any earlier LIA glacier events. Over the past 150 yr the gently sloping, heavily debris-covered lower glacier tongue has thinned significantly, but several short periods of readvance or stasis have been identified and tree-ring dated to the mid-1870s, 1890s, 1900s, 1920s, 1950s, and the mid-1970s. Ice mass loss has increased in recent years due to calving into a rapidly growing proglacial lake. The neighboring debris-free and land-based Glaciar Fr"as has also retreated markedly in recent years but shows substantial differences in the timing of the peak LIA advance (early 1600s). This indicates that site-specific factors can have a significant impact on the resulting glacier records and should thus be considered carefully in the development and assessment of regional glacier chronologies.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G., (1997). Recent glacier variations in the Southern Patagonia Icefield, South America. Arctic and Alpine Research 29, 1, 112.Google Scholar
Applequist, M.B., (1958). A simple pith locator for use with off-center increment cores. Journal of Forestry 56, 141.Google Scholar
Auer, V., (1956). The Pleistocene of Fuego-Patagonia. Part I: the Ice and Interglacial Ages. Annales Academia Scientiarium Fennicae, Series A-III, Geologica-Geographica 45, 1-226 .Google Scholar
Auer, V., (1958). The Pleistocene of Fuego, Patagonia. Part II: the history of the flora and vegetation. Annales Academiae Scientiarum Fennicae, Series A-III, Geologica-Geographica 50, 1239.Google Scholar
Benn, D.I., Kirkbride, M.P., Owen, L.A., Brazier, V., (2004). Glaciated valley landsystems. Evans, D.J.A. Glacial landsystems.Edward Arnold, London.372406.Google Scholar
Bown, F., (2004). Cambios clim"ticos en la Regi"n de Los Lagos y respuestas recientes del Glaciar Casa Pangue (41"08?S). M.Sc. Thesis, Universidad de Chile, 131 pp.Google Scholar
Bown, F., Rivera, A., (2007). Climate changes and recent glacier behaviour in the Chilean Lake District. Global and Planetary Change 59, 7986.Google Scholar
Clapperton, C.M., (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam. 779 ppGoogle Scholar
De Agostini, A.M., (1945). Andes Patagónicos. 2nd ed.Guillermo Kraft Ltda., Buenos Aires. 437 pp.Google Scholar
De Agostini, A.M., (1949). Nahuel Huapi, bellezas naturales de los Andes de la Patagonia Septentrional. Estudios Fotogr"ficos, Buenos Aires. 77 ppGoogle Scholar
Delgado, S., Villalba, R. and Masiokas, M. Remote sensing monitoring of glacier fluctuations in the Patagonian Andes. CONCORD Symposium on Climate Change: "Organizing the Science in the American Cordillera". Mendoza, Argentina. 4"6 April, .Google Scholar
Denton, G.H., Lowell, T.V., Heusser, C.J., Sl"chter, C., Andersen, B.G., Heuseer, L.E., Moreno, P.I., Marchant, D.R., (1999). Geomorphology, stratigraphy and radiocarbon chronology of Llanquihue drift in the area of the southern Lake District, Seno Reloncav", and Isla de Chilo", Chile. Geografiska Annaler 81A, 167229.Google Scholar
Fonck, F., Hess, F., (1857). Informe de los se"ores Francisco Fonck i Fernando Hess sobre la espedicion a Nahuelhuapi. Anales de la Universidad de Santiago de Chile XIV, 111.Google Scholar
Glasser, N.F., Hambrey, M.J., Aniya, M., (2002). An advance of Soler Glacier, North Patagonian Icefield, at ca. AD 1222"1342. Holocene 12, 113120.Google Scholar
Glasser, N.F., Harrison, S., Winchester, V., Aniya, M., (2004). Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, 79101.Google Scholar
Grissino-Mayer, H.D., (2001). Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 2, 205221.Google Scholar
Grove, J.M., (2004). Little Ice Ages: Ancient and Modern (2 vols). Routledge, London. 718 ppGoogle Scholar
Holmes, R.L., (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 6978.Google Scholar
Jakob, C., (1936). Alrededor del Tronador. Revista Geogr"fica Americana V, 28, 121.Google Scholar
Jakob, C., (1937). La fiscalizaci"n de las reservas acu"ticas es una obligaci"n nacional para la Argentina. Revista Geogr"fica Americana V, 50, 313326.Google Scholar
Kirkbride, M.P., (1993). The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene 3, 3, 232240.Google Scholar
Koch, J., Kilian, R., (2005). "Little Ice Age" glacier fluctuations, Gran Campo Nevado, southernmost Chile. The Holocene 15, 2028.Google Scholar
Lawrence, D.B. and Lawrence, E.G., (1959). Recent glacier variations in southern South America. American Geographical Society Southern Chile Expedition Technical Report, Office of Naval Research Contract 641(04), New York, USA., 39 pp.Google Scholar
Lliboutry, L., (1998). Glaciers of Chile and Argentina. In: Williams, R.S., Ferrigno, J.G.(eds.), Satellite Image Atlas of Glaciers of the World: South America . USGS Professional Paper 1386-I, Online version 1.02.Google Scholar
Luckman, B.H., (1986). Reconstruction of Little Ice Age events in the Canadian Rocky Mountains. Geographie physique et Quaternaire 40, 1728.CrossRefGoogle Scholar
Luckman, B.H., (1988). Dating the moraines and recession of Athabasca and Dome Glaciers, Alberta, Canada. Arctic and Alpine Research 20, 4054.Google Scholar
Luckman, B.H., (1998). Dendroglaciologie dans les Rocheuses du Canada. Geographie physique et Quaternaire 52, 137149.Google Scholar
Luckman, B.H., (2000). The Little Ice Age in the Canadian Rockies. Geomorphology 32, 357384.Google Scholar
Luckman, B.H., Villalba, R., (2001). Assessing the synchroneity of glacier fluctuations in the western cordillera of the Americas during the last millennium. Markgraf, V. Interhemispheric Climate Linkages.Academic Press, London.119140.Google Scholar
Masiokas, M., Villalba, R., Delgado, S., Trombotto, D., Luckman, B., Ripalta, A., Hernandez, J., (2001). Dendrogeomorphological reconstruction of glacier variations in Patagonia during the past 1000 years. Kaennel, D.M., Br"ker, O.U. Abstracts from the International Conference Tree Rings and People.Davos, Switzerland.177.Google Scholar
Masiokas, M.H., Villalba, R., Luckman, B.H., Lascano, M.E., Delgado, S., Stepanek, P., (2008). 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change 60, 85100.Google Scholar
Masiokas, M.H., Rivera, A., Espizua, L.E., Villalba, R., Delgado, S., Aravena, J.C., (2009). Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 242268.Google Scholar
McCarthy, D.P., Luckman, B.H., (1993). Estimating ecesis for tree-ring dating of moraines: a comparative study from the Canadian Cordillera. Arctic and Alpine Research 25, 6368.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere calibration, 0"11.0 cal kyr bp. Radiocarbon 46, 3, 10871092.Google Scholar
Mercer, J.H., (1982). Holocene glacier variations in southern South America. Striae 18, 3540.Google Scholar
Pearson, A.K., Pearson, O.P., Gomez, I.A., (1994). Biology of the bamboo Chusquea culeou (Poaceae: Bambusoideae) in southern Argentina. Vegetatio 111, 93126.Google Scholar
Porter, S.C., (1981). Glaciological evidence of Holocene climatic change. Wigley, T.M.L., Ingram, M.J., Farmer, G. Climate and History.Cambridge University Press, 83110.Google Scholar
Rabassa, J., (2007). Global climate change and its impacts on the glaciers and permafrost of Patagonia, Tierra del Fuego and the Antarctic Peninsula. In:Leite, P., Costa, W., Hidalgo, L.(Eds.), A contribution to understanding the regional impacts of global change in South America . Institute of Advanced Studies IEA/USP, S"o Paulo, Brasil., pp 21"39.Google Scholar
Rabassa, J., , C.M., Clapperton, , (1990). Quaternary glaciations of the Southern Andes. Quaternary Science Reviews 9, 153174.Google Scholar
Rabassa, J., Rubulis, S., Suarez, J., (1978). Los glaciares del Monte Tronador. Anales de Parques Nacionales XIV, 259318.Google Scholar
Rabassa, J., Rubulis, S., Su"rez, J., (1979). Rate of formation and sedimentology of (1976"1978) push-moraines, Fr"as Glacier, Mount Tronador (41"10?S; 71"53?W), Argentina. Schluechter, C. Moraines and Varves.A.A. Balkema, 6579.Google Scholar
Rabassa, J., Brandani, A., Boninsegna, J.A., Cobos, D.R., (1984). Cronolog"a de la "Peque"a Edad del Hielo" en los glaciares R"o Manso y Casta"o Overo, Cerro Tronador, Provincia de R"o Negro. Actas Noveno Congreso Geol"gico Argentino 3, 624639.Google Scholar
Rignot, E., Rivera, A., Casassa, G., (2003). Contribution of the Patagonia icefields of South America to global sea level rise. Science 302, 434437.Google Scholar
R"thlisberger, F., (1986). 10,000 Jahre Gletschergeschichte der Erde. Verlag Sauerl"nder, Aarau.Google Scholar
Sigafoos, R.S., Heindricks, E.L., (1969). The time interval between stabilization of alpine glacial deposits and establishment of tree seedlings. US Geological Survey, Professional Paper 650-B, B89B93.Google Scholar
Steffen, H., (1909). Viajes de Esploracion i Estudio en la Patagonia Occidental: 1892"1902, Vol. I. Anales de la Universidad de Chile. Imprenta Cervantes, Santiago. 409 ppGoogle Scholar
Stokes, M.A., Smiley, T., (1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, Arizona. 73 ppGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Sugden, D.E., Bentley, M.J., Fogwill, C.J., Hulton, N.R.J., McCulloch, R.D., Purves, R.S., (2005). Late-glacial glacier events in southernmost South America: a blend of "northern" and "southern" hemispheric climatic signals?. Geografiska Annaler 87 A, 273288.Google Scholar
Thomasson, K., (1959). Plankton of some lakes in an Argentine National Park with notes on terrestrial vegetation. Acta Phytogeographica Suecica 42, 83 ppGoogle Scholar
Veblen, T.T., (1982). Growth patterns of Chusquea bamboos in the understory of Chilean Nothofagus forests and their influences in forest dynamics. Bulletin of the Torrey Botanical Club 109, 4, 474487.Google Scholar
Veblen, T.T., Ashton, D.H., Rubulis, S., Lorenz, D.C., Cortes, M., (1989). Nothofagus stand development on in-transit moraines, Casa Pangue Glacier, Chile. Arctic and Alpine Research 21, 144155.Google Scholar
Villalba, R., Leiva, J.C., Rubulis, S., Suarez, J., Lenzano, L.E., (1990). Climate, tree-ring, and glacial fluctuations in the R"o Fr"as Valley, R"o Negro, Argentina. Arctic and Alpine Research 22, 3, 215232.Google Scholar
Villalba, R., Boninsegna, J.A., Veblen, T.T., Schmelter, A., Rubulis, S., (1997). Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Climatic Change 36, 3-4, 425454.Google Scholar