Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T04:04:07.178Z Has data issue: false hasContentIssue false

Lipid analysis of a ground sloth coprolite

Published online by Cambridge University Press:  20 January 2017

Fiona L. Gill*
Affiliation:
Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
Matthew P. Crump
Affiliation:
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
Remmert Schouten
Affiliation:
Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
Ian D. Bull
Affiliation:
Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
*
Corresponding author. Fax: +44 117 925 1295.

E-mail address:chflg@bristol.ac.uk (F.L. Gill).

Abstract

Coprolites can provide detailed information about the nutritional habits and digestive processes of the animals that produced them and may also yield information about the palaeoenvironment in which the animal existed. To test the utility of the lipid biomarker approach to coprolite analysis, lipids were extracted from a coprolite of the Pleistocene ground sloth Nothrotheriops shastensis. Gas chromatography/mass spectrometry results revealed a dominant spiroketal sapogenin component identified, using nuclear magnetic resonance spectroscopy, as epismilagenin. The dominance of epismilagenin is probably due to ingestion of Yucca spp. and Agave spp., which is consistent with previous studies on the diet of this species.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, P.K., Bunsawansong, P., and Morris, G.A. NMR spectral investigations .46. Complete assignment of the H-1 and C-13 NMR spectra of steroidal sapogenins: smilagenin and sarsasapogenin. Magnetic Resonance in Chemistry 35, (1997). 441446.Google Scholar
Akhov, L.S., Musienko, M.M., Piacente, S., Pizza, C., and Oleszek, W. Structure of steroidal saponins from underground parts of Allium nutans L. Journal of Agricultural and Food Chemistry 47, (1999). 31933196.Google Scholar
Ambwani, K., and Dutta, D. Seed-like structure in dinosaurian coprolite of Lameta Formation (Upper Cretaceous) at Pisdura, Maharashtra, India. Current Science 88, (2005). 352354.Google Scholar
Asami, A., Hirai, Y., and Shoji, J. Studies on the constituents of palmae plants .6. Steroid saponins and flavonoids of leaves of Phoenix canariensis hort. ex Chabaud, P. humilis Royle var. hanceana Becc., P. dactylifera L, and Licuala spinosa Wurmb. Chemical and Pharmaceutical Bulletin 39, (1991). 20532056.Google Scholar
Chapagain, B.P., and Wiesman, Z. Determination of saponins in the kernel cake of Balanites aegyptiaca by HPLC–ESI/MS. Phytochemical Analysis 18, (2007). 354362.CrossRefGoogle ScholarPubMed
Chin, K., (1996). The paleobiological implications of herbivorous dinosaur coprolites: ichnologic, petrographic, and organic geochemical investigations. Unpublished doctoral thesis, University of California at Santa Barbara, . 162 p.Google Scholar
Chin, K. The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: Why eat wood?. Palaios 22, (2007). 554566.CrossRefGoogle Scholar
Chin, K., and Brassell, S.C. The biomarker composition of coprolites from marine and terrestrial vertebrates: an untapped source of paleoecological information. Øygard, K. Organic Geochemistry Poster Sessions from the 16th International Meeting on Organic Geochemistry, Stavanger. (1993). 444447. (1993) Google Scholar
Chin, K., Tokaryk, T.T., Erickson, G.M., and Calk, L.C. A king-sized theropod coprolite. Nature 393, (1998). 680682.Google Scholar
Chin, K., Eberth, D.A., Schweitzer, M.H., Rando, T.A., Sloboda, W.J., and Horner, J.R. Remarkable preservation of undigested muscle-tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18, (2003). 286294.Google Scholar
Cruz, C., Driemeier, D., Pires, V.S., Colodel, E.M., Taketa, A.T.C., and Schenkel, E.P. Isolation of steroidal sapogenins implicated in experimentally induced cholangiopathy of sheep grazing Brachiaria decumbens in Brazil. Veterinary and Human Toxicology 42, (2000). 142145.Google ScholarPubMed
Dacosta, F.F., and Mukherjee, R. Diosgenin and yamogenin from Dioscorea multiflora . Journal of Natural Products 47, (1984). 909910.CrossRefGoogle Scholar
Debella, A., Haslinger, E., Kunert, O., Michl, G., and Abebe, D. Steroidal saponins from Asparagus africanus . Phytochemistry 51, (1999). 10691075.Google Scholar
Do, J.C., Jung, K.Y., and Son, K.H. Steroidal saponins from the subterranean part of Allium fistulosum . Journal of Natural Products 55, (1992). 168173.Google Scholar
Eames, A.J. Report on ground sloth coprolite from Dona Ana County, New Mexico. American Journal of Science 5th Series 20, (1930). 353356.Google Scholar
Fattorusso, E., Lanzotti, V., Magno, S., and Taglialatela-Scafati, O. Chemistry of the genus Allium. Part 5—sapogenins of Allium porrum L. Journal of Agricultural and Food Chemistry 46, (1998). 49044908.Google Scholar
Flåøyen, A., and Wilkins, A.L. Metabolism of saponins from Narthecium ossifragum—a plant implicated in the aetiology of alveld, a hepatogenous photosensitization of sheep. Veterinary Research Communications 21, (1997). 335345.Google Scholar
Flåøyen, A., Wilkins, A.L., and Sandvik, M. Ruminal metabolism in sheep of saponins from Yucca schidigera . Veterinary Research Communications 26, (2002). 159169.CrossRefGoogle ScholarPubMed
Gaskell, S.J., and Eglinton, G. Sterols of a contemporary Lacustrine sediment. Geochimica Et Cosmochimica Acta 40, (1976). 12211228.Google Scholar
Ghosh, P., Bhattacharya, S.K., Sahni, A., Kar, R.K., Mohabey, D.M., and Ambwani, K. Dinosaur coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India: isotopic and other markers suggesting a C-3 plant diet. Cretaceous Research 24, (2003). 743750.CrossRefGoogle Scholar
Glasby, J.S. Dictionary of Plants Containing Secondary Metabolites. (1991). Taylor and Francis, London.Google Scholar
Hansen, R.M. Shasta ground sloth food-habits, Rampart Cave, Arizona. Paleobiology 4, (1978). 302319.Google Scholar
Haraguchi, M., Dossantos, A.P.Z., Young, M.C.M., and Chu, E.P. Steroidal prosapogenins from Dioscorea olfersiana . Phytochemistry 36, (1994). 10051008.Google Scholar
Harsh, M.L., and Nag, T.N. Diosgenin and phytosterols from Lycium barbarium Linn. Current Science 50, (1981). 235 Google Scholar
Hofreiter, M., Poinar, H.N., Spaulding, W.G., Bauer, K., Martin, P.S., Possnert, G., and Paabo, S. A molecular analysis of ground sloth diet through the last glaciation. Molecular Ecology 9, (2000). 19751984.Google Scholar
Hollocher, T.C., Chin, K., Hollocher, K.T., and Kruge, M.A. Bacterial residues in coprolite of herbivorous dinosaurs: role of bacteria in mineralization of feces. Palaios 16, (2001). 547565.2.0.CO;2>CrossRefGoogle Scholar
Hoyer, G.A., Sucrow, W., and Winkler, D. Diosgenin saponins from Dioscorea floribunda . Phytochemistry 14, (1975). 539542.Google Scholar
James, H.F., and Burney, D.A. The diet and ecology of Hawaii's extinct flightless waterfowl: evidence from coprolites. Biological Journal of the Linnean Society 62, (1997). 279297.Google Scholar
Kar, D.K., and Sen, S. Smilax zeylanica Linn—a new source of diosgenin. Current Science 53, (1984). 661 Google Scholar
Kawamura, K., Ishimura, Y., and Yamazaki, K. Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochemical Cycles 17, 1 (2003). 1003 Google Scholar
Kropf, M., Mead, J.I., and Anderson, R.S. Dung, diet, and the paleoenvironment of the extinct shrub-ox (Euceratherium collinum) on the Colorado Plateau, USA. Quaternary Research 67, (2007). 143151.Google Scholar
Lajis, N.H., Abdullah, A.S.H., Salim, S.J.S., Bremner, J.B., and Khan, M.N. Epi-sarsasapogenin and epi-smilagenin—2 sapogenins isolated from the rumen content of sheep intoxicated by Brachiaria decumbens . Steroids 58, (1993). 387389.Google Scholar
Lin, D.S., Connor, W.E., Napton, L.K., and Heizer, R.F. Steroids of 2000-year-old human coprolites. Journal of Lipid Research 19, (1978). 215221.Google Scholar
Lin, R.C., LacailleDubois, M.A., Hanquet, B., Correia, M., and Chauffert, B. New diosgenin glycosides from Costus afer . Journal of Natural Products 60, (1997). 11651169.Google Scholar
Long, A., Hansen, R.M., and Martin, P.S. Extinction of Shasta ground sloth. Geological Society of America Bulletin 85, (1974). 18431848.Google Scholar
Marker, R.E., Wagner, R.B., and Ulshafer, P.R. Sterols CXLVI sapogenins. LX. Some new sources of diosgenin. Journal of the American Chemical Society 64, (1942). 12831285.CrossRefGoogle Scholar
Martin, P.S., Sabels, B.E., and Shutler, D. Rampart Cave coprolite and ecology of the Shasta ground sloth. American Journal of Science 259, (1961). 102127.Google Scholar
Mead, J.I., and Agenbroad, L.D. Isotope dating of Pleistocene dung deposits from the Colarado Plateau, Arizona and Utah. Radiocarbon 34, (1992). 119.Google Scholar
Mead, J.I., Agenbroad, L.D., Davis, O.K., and Martin, P.S. Dung of Mammuthus in the arid southwest, North America. Quaternary Research 25, (1986). 121127.CrossRefGoogle Scholar
Mead, J.I., O Rourke, M.K., and Foppe, T. Dung and diet of the extinct Harrington's mountain goat (Oreamnos harringtoni). Journal of Mammalogy 67, (1986). 284293.CrossRefGoogle Scholar
Meagher, L.P., Smith, B.L., and Wilkins, A.L. Metabolism of diosgenin-derived saponins: implications for hepatogenous photosensitization diseases in ruminants. Animal Feed Science and Technology 91, (2001). 157170.Google Scholar
Miles, C.O., Wilkins, A.L., Munday, S.C., Holland, P.T., Smith, B.L., Lancaster, M.J., and Embling, P.P. Identification of the calcium salt of epismilagenin beta-d-glucuronide in the bile crystals of sheep affected by Panicum dichotomiflorum and Panicum schinzii toxicoses. Journal of Agricultural and Food Chemistry 40, (1992). 16061609.Google Scholar
Miles, C.O., Wilkins, A.L., Munday, S.C., Flåøyen, A., Holland, P.T., and Smith, B.L. Identification of insoluble salts of the beta-d-glucuronides of episarsasapogenin and epismilagenin in the bile of lambs with alveld and examination of Narthecium ossifragum, Tribulus terrestris, and Panicum miliaceum for sapogenins. Journal of Agricultural and Food Chemistry 41, (1993). 914917.CrossRefGoogle Scholar
Murtaugh, J.J., and Bunch, R.L. Sterols as a measure of fecal pollution. Journal Water Pollution Control Federation 39, (1967). 404 Google Scholar
Nino, J., Jimenez, D.A., Mosquera, O.M., and Correa, Y.M. Diosgenin quantification by HPLC in a Dioscorea polygonoides tuber collection from Colombian flora. Journal of the Brazilian Chemical Society 18, (2007). 10731076.Google Scholar
Pacheco, M.A., Concepcion, J.L., Rangel, J.D.R., Ruiz, M.C., Michelangeli, F., and Dominguez-Bello, M.G. Stomach lysozymes of the three-toed sloth (Bradypus variegatus), an arboreal folivore from the Neotropics. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology 147, (2007). 808819.Google Scholar
Peters, K.E., Walters, C.C., and Moldowan, J.M. The Biomarker Guide Volume 1. (2005). University Press, Cambridge, United Kingdom. 471p Google Scholar
Poinar, H.N. The genetic secrets some fossils hold. Accounts of Chemical Research 35, (2002). 676684.CrossRefGoogle ScholarPubMed
Poinar, H.N., Hofreiter, M., Spaulding, W.G., Martin, P.S., Stankiewicz, B.A., Bland, H., Evershed, R.P., Possnert, G., and Paabo, S. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis . Science 281, (1998). 402406.Google Scholar
Prasad, V., Stromberg, C.A.E., Alimohammadian, H., and Sahni, A. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310, (2005). 11771180.Google Scholar
Sato, Y., and Latham, H.G. The isolation of diosgenin from Solanum xanthocarpum . Journal of the American Chemical Society 75, (1953). 6067 Google Scholar
Taylor, W.G., Zaman, M.S., Mir, Z., Mir, P.S., Acharya, S.N., Mears, G.J., and Elder, J.L. Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography mass spectrometry. Journal of Agricultural and Food Chemistry 45, (1997). 753759.Google Scholar
Thompson, R.S., Vandevender, T.R., Martin, P.S., Foppe, T., and Long, A. Shasta ground sloth (Nothrotheriops shastense hoffstetter) at Shelter Cave, New Mexico—environment, diet, and extinction. Quaternary Research 14, (1980). 360376.Google Scholar
Thulborn, R.A. Morphology, preservation and palaeobiological significance of dinosaur coprolites. Palaeogeography Palaeoclimatology Palaeoecology 83, (1991). 341366.Google Scholar
Vizcaino, S.F., Bargo, M.S., and Cassini, G.H. Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana 43, (2006). 1126.Google Scholar
Yahara, S., Nakamura, T., Someya, Y., Matsumoto, T., Yamashita, T., and Nohara, T. Studies on the solanaceous plants. 36. Steroidal glycosides, indiosides A–E, from Solanum indicum . Phytochemistry 43, (1996). 13191323.Google Scholar