Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T19:11:22.744Z Has data issue: false hasContentIssue false

Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core

Published online by Cambridge University Press:  20 January 2017

Dominic A. Hodgson*
Affiliation:
British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Elie Verleyen
Affiliation:
Lab. Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, Ghent B-9000, Belgium
Koen Sabbe
Affiliation:
Lab. Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, Ghent B-9000, Belgium
Angela H. Squier
Affiliation:
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Brendan J. Keely
Affiliation:
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Melanie J. Leng
Affiliation:
Natural Environment Research Council, Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
Krystyna M. Saunders
Affiliation:
Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia
Wim Vyverman
Affiliation:
Lab. Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, Ghent B-9000, Belgium
*
*Corresponding author. Fax: +44 1223 362616. E-mail address: daho@pcmail.nerc-bas.ac.uk (D.A. Hodgson).

Abstract

Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial–interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, J.F., Boyle, E.A., Keigwin, L., and Cortijo, E. (1997). Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature 390, 154156.Google Scholar
Airs, R.L., Atkinson, J.E., and Keely, B.J. (2001). Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. Journal of Chromatography A 917, 167177.Google Scholar
Anderson, N.J., and Leng, M.J. (2004). Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated lake sediments. Quaternary Science Review 841849. 10.1016/j.quascirev.2003.06.013Google Scholar
Battarbee, R.W., and Kneen, M.J. (1982). The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, 184188.Google Scholar
Becquey, S., and Gersonde, R. (2003). A 0.55-Ma paleotemperature record from the Subantarctic zone: implications for Antarctic Circumpolar Current development. Paleoceanography 18, 1 1014 10.1029/2000PA00576Google Scholar
Benson, L., Burdett, J., Lund, S., Kashgarian, M., and Mensing, S. (1997). Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination. Nature 388, 263265.CrossRefGoogle Scholar
Bentley, M.J., Hodgson, D.A., Sugden, D.E., Roberts, S.J., Smith, J.A., Leng, M.J., and Bryant, C. (2005). Early Holocene Retreat of the George VI Ice Shelf, Antarctic Peninsula. Geology 33, 173176.Google Scholar
Bird, M.I., Chivas, A.R., Radnell, C.J., and Burton, H.R. (1991). Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 109130.Google Scholar
Brachfeld, S.A., Banerjee, S.K., Guyodo, Y., and Acton, G.D. (2002). A 13,200 year history of century- to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters 194, 311326.Google Scholar
Broecker, W.S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?. Science 300, 15191522.Google Scholar
Burgess, J.S., Spate, A.P., and Shevlin, J. (1994). The onset of deglaciation in the Larsemann Hills, eastern Antarctica. Antarctic Science 6, 491495.CrossRefGoogle Scholar
Burgess, J., Carson, C., Head, J., and Spate, A. (1997). Larsemann Hills: not heavily glaciated during the Last Glacial Maximum.Ricci, C.A. The Antarctic Region: Geological Evolution and Processes Terra Antarctica Publication, Siena.841843.Google Scholar
Clark, P.U., Mitrovica, J.X., Milne, G.A., and Tamisiea, M.E. (2002). Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295, 24382441.Google Scholar
Cremer, H., Gore, D., Melles, M., and Roberts, D. (2003). Palaeoclimatic significance of late Quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 261280.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahljensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Dean, W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition, comparison with other models. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Domack, E., O'Brien, P., Harris, P., Taylor, F., Quilty, P.G., De Santis, L., and Raker, B. (1998). Late Quaternary sediment facies in Prydz Bay, East Antarctica and their relationship to glacial advance onto the continental shelf. Antarctic Science 10, 234244.Google Scholar
Ellis-Evans, J.C., Laybourn-Parry, J., Bayliss, P.R., and Perriss, S.J. (1998). Physical, chemical and microbial community characteristics of lakes of the Larsemann Hills, Continental Antarctica. Archiv für Hydrobiologie 141, 209230.CrossRefGoogle Scholar
EPICA, (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google Scholar
Fulford-Smith, S.P., and Sikes, E.L. (1996). The evolution of Ace Lake, Antarctica, determined from sedimentary diatom assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 124, 7386.Google Scholar
Garcia-Pichel, F., and Castenholz, R.W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology 27, 395409.Google Scholar
Gillieson, D., Burgess, J., Spate, A., and Cochrane, A. (1990). “An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica.” Australian National Antarctic Research Expeditions, Antarctic Division Australia, Kingston, Tasmania.Google Scholar
Glew, J.R. (1991). Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5, 285287.Google Scholar
Gore, D.B., Rhodes, E.J., Augustinus, P.C., Leishman, M.R., Colhoun, E.A., and Rees-Jones, J. (2001). Bunger Hills, East Antarctica: ice free at the Last Glacial Maximum. Geology 29, 11031106.Google Scholar
Harris, P.G., Zhao, M., Rosell Mele, A., Tiedemann, R., Sarnthein, M., and Maxwell, J.R. (1996). Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature 383, 6365.CrossRefGoogle Scholar
Hawes, I., and Schwarz, A.M. (1999). Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. Journal of Phycology 35, 448459.Google Scholar
Hodgson, D.A., Wright, S.W., and Davies, N. (1997). Mass spectrometry and reverse phase HPLC methods for the identification of degraded fossil pigments in lake sediments and their application in Paleolimnology. Journal of Paleolimnology 18, 335350.Google Scholar
Hodgson, D.A., Noon, P.E., Vyverman, W., Bryant, C.L., Gore, D.B., Appleby, P., Gilmour, M., Verleyen, E., Sabbe, K., Jones, V.J., Ellis-Evans, J.C., and Wood, P.B. (2001a). )Were the Larsemann Hills ice-free through the Last Glacial Maximum?. Antarctic Science 13, 440454.Google Scholar
Hodgson, D.A., Vyverman, W., and Sabbe, K. (2001b). )Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarctic Science 13, 255270.Google Scholar
Hodgson, D.A., Doran, P.T., Roberts, D., and McMinn, A. (2004a). )Paleolimnological studies from the Antarctic and subantarctic islands.Pienitz, R., Douglas, M.S.V., Smol, J.P. Long-term environmental Change in Arctic and Antarctic Lakes Developments in Palaeoenvironmental Research 8, Springer, Dordrecht.419474.CrossRefGoogle Scholar
Hodgson, D.A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P.R., Taton, A., Squier, A.H., and Keely, B.J. (2004b). )Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquatic Microbial Ecology 37, 247263.Google Scholar
D.A., Hodgson, Verleyen, E., A.H., Squier, Sabbe, K., B.J., Keely, K.M., Saunders, Vyverman, W. in press-a. Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last Interglacial) lake-sediment records.Quaternary Science Reviews.Google Scholar
D.A., Hodgson, Vyverman, W., Verleyen, E., P.R., Leavitt, Sabbe, K., A.H., Squier, B.J., Keely in press. Late Pleistocene record of elevated UV radiation in an Antarctic lake. Earth and Planetary Science Letters .Google Scholar
Ingólfsson, O., Hjort, C., Berkman, P.A., Björk, S., Colhoun, E.A., Goodwin, I.D., Hall, B.L., Hirakawa, K., Melles, M., Möller, P., and Prentice, M.L. ("lfsson et al., 1998). )Antarctic glacial history since the last glacial maximum: an overview of the record on land. Antarctic Science 10, 326344.Google Scholar
Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W. (1997). Phytoplankton Pigments in Oceanography. UNESCO, Paris.Google Scholar
Jouzel, J., Masson, V., Cattani, O., Falourd, S., Stievenard, M., Stenni, B., Longinelli, A., Johnsen, S.J., Steffenssen, J.P., Petit, J.R., Schwander, J., Souchez, R., and Barkov, N.I. (2001). A new 27 ky high resolution East Antarctic climate record. Geophysical Research Letters 28, 31993202.CrossRefGoogle Scholar
Kaup, E., and Burgess, J.S. (2002). Surface and subsurface flows of nutrients in natural and human impacted lake catchments on Broknes, Larsemann Hills, Antarctica. Antarctic Science 14, 343352.CrossRefGoogle Scholar
Kim, J.H., Schneider, R.R., Muller, P.J., and Wefer, G. (2002). Interhemispheric comparison of deglacial sea-surface temperature patterns in Atlantic eastern boundary currents. Earth and Planetary Science Letters 194, 383393.Google Scholar
Lamb, A.L., Leng, M.J., Lamb, H.F., and Mohammed, U.M. (2000). A 9000-year oxygen and carbon isotope record of hydrological change in a small Ethiopian crater lake. The Holocene 10, 167177.Google Scholar
Leavitt, P.R., and Findlay, D.L. (1994). Comparison of fossil pigments with 20 years of phytoplankton data from Eutrophic Lake-227, Experimental Lakes Area, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 51, 22862299.CrossRefGoogle Scholar
Leavitt, P.R., and Hodgson, D.A. (2001). Sedimentary pigments.Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Changes Using Lake Sediments: Terrestrial Algal and Siliceous Indicators Developments in Paleoenvironmental Research vol. 3, Kluwer Academic Publishers, Dordrecht.295325.CrossRefGoogle Scholar
Leavitt, P.R., Vinebrooke, R.D., Donald, D.B., Smol, J.P., and Schindler, D.W. (1997). Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388, 457459.Google Scholar
Leng, M.J., and Marshall, J.D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811831.Google Scholar
Linick, T.W., Jull, A.J.T., Toolin, L.J., and Donahue, D.J. (1986). Operation of the NSF-Arizona accelerator facility for radioisotope analysis and results from selected collaborative research projects. Radiocarbon 28, 522533.Google Scholar
Livingstone, D.A. (1955). A lightweight piston sampler for lake deposits. Ecology 36, 137139.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.R., Steig, E.J., Stievenard, M., and Vaikmae, R. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotope records. Quaternary Research 54, 348358.Google Scholar
Noon, P.E., Leng, M.J., and Jones, V.J. (2003). Oxygen isotope (d18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. The Holocene 13, 251263.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C., and Harrigan, P.R. (2002). Extreme responses to climate change in Antarctic lakes. Science 295, 645 CrossRefGoogle ScholarPubMed
Renberg, I. (1990). A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4, 8790.Google Scholar
Roberts, D., and McMinn, A. (1996). Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science 8, 331341.Google Scholar
Roberts, D., and McMinn, A. (1998). A weighted-averaging regression and calibration model for inferring lake water salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. Journal of Paleolimnology 19, 99113.Google Scholar
Roberts, D., and McMinn, A. (1999). A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene 9, 401408.Google Scholar
Roberts, D., McMinn, A., Johnston, N., Gore, D.B., Melles, M., and Cremer, H. (2001). An analysis of the limnology and sedimentary diatom flora of fourteen lakes and ponds from the Windmill Islands, East Antarctica. Antarctic Science 13, 410419.Google Scholar
Sabbe, K., Verleyen, E., Hodgson, D.A., and Vyverman, W. (2003). Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands (E-Antarctica). Antarctic Science 15, 227248.Google Scholar
Sabbe, K., Hodgson, D.A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K., and Vyverman, W. (2004). Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology 49, 296319.Google Scholar
Siegert, M.J. (2003). Glacial–interglacial variations in central East Antarctic ice accumulation rates. Quaternary Science Reviews 22, 741750.Google Scholar
Squier, A. (2000). “Fossil pigments as markers for environmental change in Antarctic lakes.”. Unpublished MChem thesis, York University, .Google Scholar
Squier, A.H., Airs, R.L., Hodgson, D.A., and Keely, B.J. (2004). Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of the ultraviolet screening pigment scytonemin: characteristic fragmentations. Rapid Communications in Mass Spectrometry 19, 3846.Google Scholar
Stocker, T.F. (2003). South dials north. Nature 424, 496499.CrossRefGoogle ScholarPubMed
Stuiver, M., and Reimer, P.J. (1993). Extended C-14 data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35, 215230.Google Scholar
Taylor, F., and McMinn, A. (2002). Late Quaternary diatom assemblages from Prydz Bay, Eastern Antarctica. Quaternary Research 57, 151161.Google Scholar
Taylor, F., Whitehead, J.M., and Domack, E. (2001). Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record. Marine Micropaleontology 41, 2543.Google Scholar
ter Braak, C.J.F., and Smilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY, USA.Google Scholar
Van de Vijver, B., Frenot, Y., and Beyens, L. (2002). Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica. Bibliotheca Diatomologica vol. 46, J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin, Stuttgart.Google Scholar
Verleyen, E., Hodgson, D.A., Vyverman, W., Roberts, D., McMinn, A., Vanhoutte, K., and Sabbe, K. (2003). Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. Journal of Paleolimnology 30, 195215.Google Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., Vanhoutte, K., and Vyverman, W. (2004a). )Coastal oceanographic conditions in the Prydz Bay region (East Antarctica) during the Holocene recorded in an isolation basin. The Holocene 14, 246257.Google Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., and Vyverman, W. (2004b). )Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica). Journal of Quaternary Science 19, 361375.Google Scholar
Verleyen, E., Hodgson, D.A., Milne, G.A., Sabbe, K., and Vyverman, W. (2005). Relative sea level history from the Lambert Glacier region (East Antarctica) and its relation to deglacial melting and Holocene glacier re-advance. Quaternary Research 63, 4552.Google Scholar
Verleyen, E., D.A., Hodgson, Sabbe, K., Vyverman, W. in press. Late Holocene changes in ultraviolet radiation penetration recorded in an East Antarctic lake.Journal of Paleolimnology Google Scholar
Vimeux, F., Masson, V., Jouzel, J., Petit, J.R., Steig, E.J., Steivenard, M., Vaikmae, R., and White, J.W.C. (2001). Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records. Climate Dynamics 17, 503513.Google Scholar
Weaver, A.J., Saenko, O.A., Clark, P.U., and Mitrovica, J.X. (2003). Meltwater Pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 17091713.Google Scholar
Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjørnland, T., Repeta, D., and Welschmeyer, N.A. (1991). Improved HPLC method for analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77, 183196.Google Scholar