Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T14:42:07.672Z Has data issue: false hasContentIssue false

Inverse Multiparameter Modeling of Paleoclimate Carbon Cycle Indices

Published online by Cambridge University Press:  20 January 2017

C. Heinze
Affiliation:
Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg, 13 Germany
K. Hasselmann
Affiliation:
Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg, 13 Germany

Abstract

A simple linear response model describing the functional relationship between ocean carbon cycle parameters and paleoclimate tracers (atmospheric pCO2, δ13C, CaCO3 saturation) was derived from a set of sensitivity experiments performed previously using a three-dimensional carbon cycle model. The linear model is optimally fitted to ice and marine sediment core records for the last 120,000 yr to estimate the carbon cycle parameter changes that could have caused the observed reduction of atmospheric CO2 partial pressure during the last glaciation. The analysis indicates that the glacial pCO2 reduction was primarily caused by a strengthening of the biological POC pump and a retardation of the oceanic circulation. An increase in deep-sea alkalinity and a change in the advective pattern of the ocean circulation have a smaller impact on atmospheric CO2 but are necessary to explain the full set of paleoclimate tracers.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenbach, A. V., and Sarnthein, M. (1989). Productivity record in benthic foraminifera. In “Productivity in the Ocean: Present and Past” (Berger, W. H. Smetacek, V. S., and Wefer, G., Eds.), pp. 255269. Wiley, New York.Google Scholar
Bacastow, R. B., and Maier-Reimer, E. (1990). Circulation model of the oceanic carbon cycle. Climate Dynamics 4, 95125.Google Scholar
Balsam, W. L. (1983). Carbonate dissolution on the Muir Seamount (Western North Atlantic): Interglaciat/glacial changes. Journal of Sedimentary Petrology 53, 719731.Google Scholar
Barnola, J. M. Raynaud, D. Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408414.Google Scholar
Berger, W. H., and Keir, R. S. (1984). Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. In “Climate Processes and Climate Sensitivity” (Hansen, J. E. and Takahashi, T., Eds.), pp. 337351. American Geophysical Union, Geophysical Monograph 29, Washington, DC.Google Scholar
Boyle, E. A. (1988). The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. Journal of Geophysical Research 93, 1570115714.Google Scholar
Broecker, W. S. (1982). Ocean chemistry during glacial time. Geochim-ica et Cosmochimica Acta 46, 16891705.Google Scholar
Broecker, W. S. Andree, M. Bonani, G. Woffli, W. Oeschger, H. Klas, M. Mix, A., and Curry, W. (1988). Preliminary estimates for the radiocarbon age of deep water in the glacial ocean, Paleocean-ography 3, 659669.Google Scholar
Broecker, W. S., and Peng, T.-H. (1986). Carbon cycle: 1985—Glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon 28, 309327.Google Scholar
Broecker, W. S., and Peng, T.-H. (1987a). The oceanic salt pump: Does it contribute to the glacial-interglacial difference in atmospheric CO 2content? Global Biogeochemical Cycles 1, 251259.Google Scholar
Broecker, W. S., and Peng, T.-H. (1987b). The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Global Biogeochemical Cycles 1, 1529.CrossRefGoogle Scholar
Broecker, W. S., and Peng, T.-H. (1989). The cause for the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochemical Cycles 3, 215239.Google Scholar
Crowley, T. J. (1983). Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Marine Geology 51, 114.Google Scholar
Curry, W. B., and Crowley, T. J. (1987). The δ13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanography!, 489517.Google Scholar
deMenocal, P. B. Oppo, D. W. Fairbanks, R. G., and Prell, W. L. (1992). Pleistocene δ13C variability of North Atlantic intermediate water. Paleoceanography 7, 229250.CrossRefGoogle Scholar
Dymond, J., and Lyle, M. (1985). Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for CO2 variations during the Pleistocene. Limnology and Oceanography 30, 699712.Google Scholar
Farrell, J. W., and Prell, W. L. (1989). Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography 4, 447466.Google Scholar
Heinze, C. Maier-Reimer, E., and Winn, K. (1991). Glacial pCO2 reduction by the World Ocean: Experiments with the Hamburg Carbon Cycle Model. Paleoceanography 6, 395430.CrossRefGoogle Scholar
Knox, F., and McElroy, M. B. (1984). Changes in atmospheric CO2: Influence of the marine biota at high latitude. Journal of Geophysical Research 89, 46294637.CrossRefGoogle Scholar
Lanczos, C. (1961). “Linear Differential Operators.” D. Van Nostrand Company Ltd., London.Google Scholar
Lautenschlager, M. Mikolajewicz, U. Maier-Reimer, E., and Heinze, C. (1992). Application of ocean models for the interpretation of AGCM experiments on the climate of the last glacial maximum. Paleoceanography 7, 769782.Google Scholar
Maier-Reimer, E., and Bacastow, R. (1990). Modelling of geochemical tracers in the ocean. In “Climate-Ocean Interaction” (Schle-singer, M. E., Ed.), pp. 233267. Kluwer, Dordrecht.Google Scholar
Maier-Reimer, E., and Hasselmann, K. (1987). Transport and storage of CO2 in the ocean—An inorganic ocean-circulation carbon cycle model. Climate Dynamics 2, 6390.Google Scholar
Maier-Reimer, E. Hasselmann, K., and Mikolajewicz, U. (1993). Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. Journal of Physical Oceanography 23, 731757.Google Scholar
Martinson, D. G. Pisias, N. G. Hays, J. D. Imbrie, J. Moore, T. D. Jr., and Shackleton, N. J. (1987). Age dating and orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chro-nostratigraphy, Quaternary Research 27, 129.Google Scholar
Matsu’ura, M., and Hirata, N. (1982). Generalized least-squares solutions to quasi-linear inverse problems with a priori information. Journal of Physics of the Earth 30, 451468.Google Scholar
Mix, A. C. Pisias, N. G. Zahn, R. Rugh, W. Lopez, C, and Nelson, K. (1991). Carbon 13 in Pacific deep and intermediate waters, 0-370 KA: Implications for ocean circulation and Pleistocene CO2. Paleoceanography 6, 205226.CrossRefGoogle Scholar
Neftel, A. Oeschger, H. Schwander, J. Stauffer, B., and Zumbrunn, R. (1982). Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295, 220223.Google Scholar
Peterson, L. C, and Prell, W. L. (1985). Carbonate preservation and rates of climatic change: An 800 kyr record from the Indian Ocean. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (Sundquist, E. T. and Broecker, W. S., Eds.), pp. 251269. American Geophysical Union, Geophysical Monograph 32, Washington, DC.Google Scholar
Sarmiento, J. L., and Toggweiler, J. R. (1984). A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 620624.Google Scholar
Sarnthein, M. Erlenkeuser, H. von Grafenstein, R., and Schroder, C. (1984). Stable-isotope stratigraphy for the last 750,000 years: “Meteor” core 13519 from the eastern equatorial Atlantic. “Meteor” For-schungsergebnisse, Reihe C, No. 38, 924.Google Scholar
Shackleton, N. J. (1977). Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In “The Fate of Fossil Fuel CO2 in the Oceans” (Andersen, N. R. and Malahoff, A., Eds.), pp. 401427. Plenum, New York.Google Scholar
Shackleton, N. J. Imbrie, J., and Hall, M. A. (1983). Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth and Planetary Science Letters 65, 233244.Google Scholar
Shackleton, N. J., and Pisias, N. G. (1985). Atmospheric carbon dioxide, orbital forcing, and climate. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (Sundquist, E. T. and Broecker, W. S., Eds.), pp. 303317. American Geophysical Union, Geophysical Monograph 32, Washington, DC.Google Scholar
Siegenthaler, U., and Wenk, T. (1984). Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624626.Google Scholar
Wiggins, R. A. (1972). The general linear inverse problem: Implication of surface waves and free oscillations for earth structure. Reviews of Geophysics and Space Physics 10, 251285.Google Scholar
Wunsch, C. (1989). Tracer inverse problems. In “Oceanic Circulation models: Combining Data and Dynamics” (Anderson, D. L. T. and Willebrand, J., Eds.), pp. 177. Kluwer, Dordrecht.Google Scholar
Zahn, R. Winn, K., and Sarnthein, M. (1986). Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography 1, 2742.Google Scholar