Skip to main content Accessibility help
×
Home

Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet

  • Derek Fabel (a1), David Fink (a2), Ola Fredin (a3), Jon Harbor (a4), Magnus Land (a5) and Arjen P. Stroeven (a3)...

Abstract

Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600–26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.

Copyright

Corresponding author

* Corresponding author.Email Address: dfabel@ges.gla.ac.uk(D. Fabel).

Footnotes

Hide All
1 Present address: Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, Trondheim N-7491, Norway.

Footnotes

References

Hide All
Ahlmann, H.W., (1919). Geomorphological studies in Norway. Geografiska Annaler 1, 1148.
Balco, G., Stone, J.O.H., Porter, S.C., Caffee, M.W., (2002). Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quaternary Science Reviews 21, 21272135.
Berglund, B.E., Barnekow, L., Hammarlund, D., Sandgren, P., Snowball, I.F., (1996). Holocene forest dynamics and climate changes in the Abisko area, northern Sweden—The Sonesson model of vegetation history reconsidered and confirmed. Ecological Bulletin 45, 1530.
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T., Caffee, M., (1999). Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinian glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.
Boulton, G.S., Dongelmans, P., Punkari, M., Broadgate, M., (2001). Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian. Quaternary Science Reviews 20, 591625.
Briner, J.P., Swanson, T.W., Caffee, M., (2001). Late Pleistocene cosmogenic Cl-36 glacial chronology of the southwestern Ahklun Mountains, Alaska. Quaternary Research 56, 148154.
Child, D., Elliott, G., Mifsud, C., Smith, A.M., Fink, D., (2000). Sample processing for earth science studies at ANTARES. Nuclear Instruments and Methods in Physics Research Section B, Beam Interactions with Materials and Atoms 172, 856860.
Clarhäll, A., Kleman, J., (1999). Distribution and glaciological implications of relict surfaces on the Ultevis plateau, northwestern Sweden. Annals of Glaciology 28, 202208.
Clark, P.U., Brook, E.J., Raisbeck, G.M., Yiou, F., Clark, J., (2003). Cosmogenic Be-10 ages of the Saglek Moraines, Torngat Mountains. Labrador Geology 31, 617620.
Dyke, A.S., (1993). Landscapes of cold-centered late Wisconsinan ice caps, Arctic Canada. Progress in Physical Geography 17, 223247.
Fabel, D., Stroeven, A.P., Harbor, J., Kleman, J., Elmore, D., Fink, D., (2002). Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters 201, 397406.
Fink, D., McKelvey, B., Hannan, D., Newsome, D., (2000). Cold rocks, hot sands: in-situ cosmogenic applications in Australia at ANTARES. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 172, 838846.
Fink, D., Hotchkis, M.A.C., Hua, Q., Jacobsen, G.E., Smith, A.M., Zoppi, U., Child, D., Mifsud, C., van der Gaast, H.A., Williams, A.A., Williams, M., (2004). The ANTARES AMS facility at ANSTO. Nuclear Instruments and Methods in Physics Research B223–B224, 109115.
Forsström, L., (1990). Occurrence of larch (Larix) in Fennoscandia during the Eemian interglacial and the Brørup interstadial according to pollen analytical data. Boreas 19, 241248.
Fredén, C., (1998). Berg och Jord. SNA Publishing, Stockholm.
Fredin, O., (2004). Mountain Centered Icefields in Northern Scandinavia. Unpublished PhD diss, ., Stockholm University.
Fredin, A., Hättestrand, C., (2002). Relict lateral moraines in northern Sweden—Evidence for an early mountain centred ice sheet. Sedimentary Geology 149, 145156.
Hallet, B., Putkonen, J., (1994). Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.
Hättestrand, C., (1998). The glacial geomorphology of central and northern Sweden. Sveriges Geologiska Undersoekning, Serie C: Avhandlingar och Uppsatser 85, 47
Hättestrand, C., Stroeven, A.P., (2002). A relict landscape in the centre of Fennoscandian glaciation: geomorphological evidence of minimal quaternary glacial erosion. Geomorphology 44, 127143.
Helmens, K.F., Rasanen, M.E., Johansson, P.W., Jungner, H., Korjonen, K., (2000). The last interglacial–glacial cycle in NE Fennoscandia: a nearly continuous record from Sokli (Finnish Lapland). Quaternary Science Reviews 19, 16051623.
Hirvas, H., (1991). Pleistocene stratigraphy of Finnish Lapland. Geological survey of Finland Bulletin 354, 123
Houmark-Nielsen, M., Kjaer, K.H., (2003). Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. Journal of Quaternary Science 18, 769786.
Ives, J.D., Kirby, R.P., (1964). Fluvioglacial erosion near Knob Lake, central Quebeq-Labrador, Canada: a discussion. Geological Society of America Bulletin 75, 917922.
Kleman, J., (1992). The palimpsest glacial landscape in northwestern Sweden-Late Weichselian deglaciation landforms and traces of older west-centered ice sheets. Geografiska Annaler 74A, 305325.
Kleman, J., Hättestrand, C., (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum. Nature 402, 6366.
Kleman, J., Stroeven, A.P., (1997). Preglacial surface remnants and Quaternary glacial regimes in northwestern Sweden. Geomorphology 19, 3554.
Kleman, J., Hättestrand, C., Borgström, I., Stroeven, A., (1997). Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology 43, 283299.
Kohl, C.P., Nishiizumi, K., (1992). Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35863587.
Lagerbäck, R., (1988). The Veiki moraines in northern Sweden-widespread evidence of an early Weichselian deglaciation. Boreas 17, 469486.
Lagerbäck, R., Robertsson, A.-M., (1988). Kettle holes-stratigraphical archives for Weichselian geology and palaeoenvironment in northernmost Sweden. Boreas 17, 439468.
Lal, D., (1991). Cosmic-ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.
Land, M., Öhlander, B., (2000). Chemical weathering rates, erosion rates and mobility of major and trace elements in a boreal till. Aquatic Geochemistry 6, 435460.
Larsen, E., Sejrup, H.P., (1990). Weichselian land-sea interactions: Western Norway-Norwegian Sea. Quaternary Science Reviews 9, 8597.
Law, K.R., Nesbitt, H.W., Longstaffe, F.J., (1991). Weathering of granitic tills and the genesis of a podzol. American Journal of Science 291, 940976.
Licciardi, J.M., Clark, P.U., Brook, E.J., Pierce, K.L., Kurz, M.D., Elmore, D., Sharma, P., (2001). Cosmogenic He-3 and Be-10 chronologies of the late Pinedale northern Yellowstone ice cap, Montana, USA. Geology 29, 10951098.
Linge, H., Lauritzen, S.E., (2001). Stable isotope stratigraphy of a late last interglacial speleothem from Rana, Northern Norway. Quaternary Research 56, 155164.
Ljungner, E., (1949). The east-west balance of the Quaternary ice caps in Patagonia and Scandinavia. Bulletin of the Geological Institute of Uppsala 33, 1196.
Lundqvist, J., (1971). The interglacial deposit at the Leveäniemi Mine, Svappavaara, Swedish Lapland. Sveriges Geologiska Undersoekning, Serie C: Avhandlingar och Uppsatser 658, 163
Lundqvist, J., (1992). Glacial stratigraphy in Sweden. Special Paper-Geological Survey of Finland 15, 4359.
Mangerud, J., (2004). Ice sheet limits on Norway and the Norwegian continental shelf. Ehlers, J., Gibbard, P., Quaternary Glaciations-Extent and Chronology, Part I: Europe. Elsevier, Developments in Quaternary Science, Amsterdam.488
Mangerud, J., Jansen, E., Landvik, J.Y., (1996). Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Global and Planetary Change 12, 1126.
Näslund, J.O., Rodhe, L., Fastook, J.L., Holmlund, P., (2003). New ways of studying ice sheet flow directions and glacial erosion by computer modelling—examples from Fennoscandia. Quaternary Science Reviews 22, 245258.
Olsen, L., Mejdahl, V., Selvik, S.F., (1996). Middle and Late Pleistocene stratigraphy, chronology and glacial history in Finnmark, north Norway. Bulletin-Norges Geologiske Undersøkelse 429
Phillips, F.M., Zreda, M.G., Evenson, E.B., Hall, R.D., Chadwick, O.A., Sharma, P., (1997). Cosmogenic Cl-36 and Be-10 ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming. Geological Society of America Bulletin 109, 14531463.
Putkonen, J., Swanson, T., (2003). Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255261.
Rea, B.R., Whalley, W.B., Rainey, M.M., Gordon, J.E., (1996). Blockfields, old or new? Evidence and implications from some plateaus in northern Norway. Geomorphology 15, 109121.
Rodhe, L., (1988). Glaciofluvial channels formed prior to the last deglaciation—Examples from Swedish Lapland. Boreas 17, 511516.
Sollid, L.J., Sørbel, L., (1994). Distribution of glacial landforms in southern Norway in relation to the thermal regime of the last continental ice sheet. Geografiska Annaler 76A, 2535.
Stone, J.O., (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.
Stroeven, A.P., Fabel, D., Harbor, J., Hättestrand, C., Kleman, J., (2002a). Quantifying the erosional impact of the Fennoscandian ice sheet in the Torneträsk-Narvik corridor, northern Sweden, based on cosmogenic radionuclide data. Geografiska Annaler 84, a, 275287.
Stroeven, A.P., Fabel, D., Hättestrand, C., Harbor, J., (2002b). A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44, 145154.
Zreda, M., Phillips, F.M., Elmore, D., (1994). Cosmogenic 36Cl accumulation in unstable landforms 2. Simulations and measurements on eroding surfaces. Water Resources Research 30, 31273136.

Keywords

Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet

  • Derek Fabel (a1), David Fink (a2), Ola Fredin (a3), Jon Harbor (a4), Magnus Land (a5) and Arjen P. Stroeven (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed