Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T02:21:05.371Z Has data issue: false hasContentIssue false

Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tibet?

Published online by Cambridge University Press:  20 January 2017

Georg Miehe*
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Sabine Miehe
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Kerstin Bach
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Jürgen Kluge
Affiliation:
Faculty of Geography, University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany
Karsten Wesche
Affiliation:
Senckenberg Museum of Natural History Görlitz, PoB 300 154, D-02806 Goerlitz, Germany, Germany
Yang Yongping
Affiliation:
Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China
Liu Jianquan
Affiliation:
Institute of Molecular Ecology, MOE Key Laboratory of Arid and Grassland Ecology, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
*
Corresponding author. Fax: + 49 6421 2828950. E-mail address:miehe@staff.uni-marburg.de (G. Miehe).

Abstract

Arid and Alpine ecosystems are known for extreme environmental changes during the Late Quaternary. We hypothesize that the world's largest Alpine arid ecosystem however, the Alpine Steppes of the Tibetan highlands, remained ecologically stable during the LGM and the mid-Holocene. This hypothesis is tested by distributional range of plant species, plant life forms and rate of endemism. The set of character species has a precipitation gradient between 50 and 350 mm/a, testifying for resilience to precipitation changes. 83% of the species have a wider vertical range than 1000 m used as a proxy for resilience to temperature changes. 30% of the species are endemic with 10 endemic genera, including plate-shaped cushions as a unique plant life form. These findings are in line with palaeo-ecological proxies (δ18O, pollen) allowing the assumption that Alpine Steppes persisted during the LGM with 3 to 4 K lower summer temperatures.

During the mid-Holocene, forests could have replaced Alpine Steppes in the upper catchments of the Huang He, Yangtze, Mekong, Salween and Yarlung Zhangbo, but not in the interior basins of the north-western highlands, because the basins were then flooded, suppressing forests and supporting the environmental stability of this arid Alpine grassland biome.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atlas of Tibet Plateau, (1990). Science press, Beijing (in Chinese).Google Scholar
Barthlott, W., Lauer, W., and Placke, A. Global distributions of species diversity in vascular plants. Towards a world map of phytodiversity. Erdkunde 50, (1996). 317328.Google Scholar
Behre, K.E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen and Spores 23, (1981). 225245.Google Scholar
Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, (2006). 279295.CrossRefGoogle Scholar
Böhner, J., and Lehmkuhl, F. Environmental change modeling for Central and High Asia: Pleistocene, present and future scenarios. Boreas 34, (2005). 112.Google Scholar
Chen, S.Y., Wu, G.L., Zhang, D.J., Gao, Q.B., Duan, Y.Z., Zhang, F.Q., and Chen, S.L. Potential refugium on the Qinghai–Tibet plateau revealed by the chloroplast DNA phylogeography of the Alpine species Metagentiana striata (Gentianaceae). Botanical Journal of the Linnean Society 157, (2008). 125140.Google Scholar
Ci, H.X., Lin, G.H., Cai, Z.Y., Tang, L.Z., Su, J.P., and Liu, J.Q. Population history of the plateau pika endemic to the Qinghai–Tibetan Plateau based on mtDNA sequence data. Journal of Zoology 279, (2009). 396403.CrossRefGoogle Scholar
Comes, H.P., and Kadereit, J.W. Spatial and temporal patterns in the evolution of the flora of the European Alpine system. Taxon 52, (2003). 451462.Google Scholar
Derbyshire, E., Shi, Yf., Li, Jj., Zheng, Bx., Li, Sj., and Wang, Jt. Quaternary glaciation of Tibet - the geological evidence. Quaternary Science Reviews 10, (1991). 485510.CrossRefGoogle Scholar
Diaz, S., Acosta, A., and Cabido, M. Morphological analysis of herbaceous communities under different grazing regimes. Journal of Vegetation Science 3, (1992). 689696.CrossRefGoogle Scholar
Dickoré, B.W. Flora Karakorumensis 1. Angiospermae, Monocotyledonae. Stapfia 39, (1995). Google Scholar
Dickoré, B.W., and Miehe, G. Cold spots in the highest mountains of the world — diversity patterns and gradients in the Flora of the Karakorum. Körner, C., and Spehn, E.M. Mountain Biodiversity. (2001). Parthenon, London, UK. 29147.Google Scholar
Dobremez, J.F., and Joshi, D.P. Carte écologique du Népal. Dhangarhi-Api 1, (1984). CRNS, Paris. 250000 Google Scholar
Dobremez, J.F., and Shakya, P.R. Carte écologique du Népal. Biratnagar-Kanchenjunga 1, (1977). CRNS, Paris. 250000 Google Scholar
Dobremez, J.F., and Shrestha, T.B. Carte écologique du Népal. Jumla-Saipal 1, (1980). CRNS, Paris. 250000 Google Scholar
Domrös, M., and Peng, G.B. The Climate of China. (1988). Springer, Berlin.CrossRefGoogle Scholar
Duan, A.M., and Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, (2005). 793807.Google Scholar
Dynesius, M., and Jansson, R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA 97, (2000). 91159120.Google Scholar
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., and Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18, (1991). Goltze, Göttingen.Google Scholar
Farjon, A. A Monograph of Cupressacaea and Sciadopitys. (2005). Royal Botanic Gardens, Kew.Google Scholar
Fjeldså, J. Geographical pattern for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiversity and Conservation 3, (1994). 207226.Google Scholar
Fjeldså, J., and Lovett, J.C. Biodiversity and environmental stability. Biodiversity and Conservation 6, (1997). 325346.Google Scholar
Fontes, J.-C., Gasse, F., and Gibert, E. Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1: chronology and stabile isotope of Carbonates of a Holocene lacustrine record. Palaeogeography, Palaeoclimatology, Palaeoecology 120, (1996). 2547.Google Scholar
Frenzel, B., Bräuning, A., and Adamczyk, S. On the problem of possible last-glacial forest-refuge-areas within the deep valleys of eastern Tibet. Erdkunde 57, (2003). 182198.CrossRefGoogle Scholar
Gaillard, M.-J. Pollen methods and studies/archaeological applications. Elias, S.A. Encyclopedia of Quaternary Science. (2007). Elsevier, Amsterdam. 25702595.Google Scholar
Gasse, F., Fontes, J.C., v.Campo, E., and Wei, K. Holocene environmental changes in Bangong Co basin (western Tibet). Part 4: discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, (1996). 7992.Google Scholar
Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111, (1979). 11691194.CrossRefGoogle Scholar
Handel-Mazzetti, H. Systematische Monographie der Gattung Leontopodium. Beihefte Botanisches Centralblatt 44, (1927). 1178.Google Scholar
Herzschuh, U., and Liu, X.Q. Vegetation evolution in arid China during marine isotope stages 3 and 5 (65–11 ka). Developments in Quaternary Sciences 9, (2007). 4149.Google Scholar
Herzschuh, U., Kürschner, H., and Mischke, S. Temperature variability and vertical vegetation belt shifts during the last 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quaternary Research 66, (2006). 133146.Google Scholar
Herzschuh, U., Birks, H.J.B., Liu, X.Q., Kubatzki, C., and Lohmann, G. What caused the mid-Holocene forest decline on the eastern Tibet–Qinghai Plateau?. Global Ecology and Biogeography 19, (2010). 278286.CrossRefGoogle Scholar
Hill, M.O., and Gauch, H.G. Detrended correspondence analysis: an improved ordination technique. Vegetation 42, (1980). 4758.Google Scholar
Jansson, R. Global patterns in endemism explained by past climatic changes. Proceedings of the Royal Society London B 270, (2002). 583590.Google Scholar
Jiang, D.B., Wang, H.J., Drange, H., and Lang, X.M. Last Glacial Maximum over China: sensitivities of climate to paleovegetation and Tibetan ice sheet. Journal of Geophysical Research 108, (2003). 4102 CrossRefGoogle Scholar
Kaiser, K. Pedogeomorphological transect studies in Tibet: implications for landscape history and present-day dynamics. Praze Geografizne 200, (2004). 147165.Google Scholar
Kong, P., Na, C., Xiao, W., Brown, R., Fabel, D., Freeman, S., and Wang, Y. Cosmogenic 10Be and 26Al dating of palaeo-Lake shorelines on Tibet. American Geophysical Union, Fall Meeting 2006. (2006). abstract #PP23B1741 Google Scholar
Körner, C. Alpine plant life. Functional Plant Ecology of High Mountain Ecosystem. (1999). Springer, Berlin.Google Scholar
Kuhle, M. Reconstruction of the 2.4 million km² Late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quaternary International 45, 46 (2001). 71108.Google Scholar
Kuper, R., and Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution. Science 313, (2006). 803807.Google Scholar
Lehmkuhl, F., and Owen, L.A. Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34, (2005). 87100.Google Scholar
Li, B.Y., and Zhu, L.P. “Greatest lake period” and its palaeo-environment on the Tibetan plateau. Journal of Geographical Sciences 11, (2001). 3442.Google Scholar
Liu, S.W. Flora Qinghaiica. (1992–99). People's Publishing House, Xining.Google Scholar
Liu, J., Yu, G., and Chen, X. Palaeoclimate simulation of 21 ka for the Tibetan Plateau and eastern Asia. Climate Dynamics 19, (2002). 575583.Google Scholar
Liu, S.W., Dong, M., Song, Z.P., and Wei, W. Genetic diversity patterns of Stipa purpurea populations in the hinterland of the Qinghai–Tibet Plateau. Annals Applied Biology 154, (2009). 5765.Google Scholar
, H.Y., Wang, S.M., Wu, N.Q., Tong, G.B., Yang, X.D., Shen, C.M., Li, S.J., Zhu, L.P., and Wang, L. A new pollen record of the last 2.8 Ma from Co Ngion, central Tibetan plateau. Science in China (Series D) 44, (2001). Suppl. 292–300 Google Scholar
McCune, B., and Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data, Version 4. (1999). MjM Software Design, Gleneden Beach, Oregon, USA.Google Scholar
Meng, L.H., Yang, R., Abbott, R.J., Miehe, G., Hu, T., and Liu, J. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai–Tibetan Plateau and adjacent highlands. Molecular Ecology 16, (2007). 41284137.Google Scholar
Miehe, G., Winiger, M., Böhner, J., and Zhang, Y. The climatic diagram map of High Asia. Purpose and concepts. Erdkunde 55, (2001). 9497.Google Scholar
Miehe, G., Miehe, S., and Dickoré, B.W. Alpine deserts in High Asia. Yang, X.P. Desert and Alpine Environments. (2002). Ocean Press, Beijing. 5979.Google Scholar
Miehe, G., Miehe, S., Vogel, J., Sonam, C., and Duo, La Highest treeline in the Northern Hemisphere found in Southern Tibet. Mountain Research and Development 27, (2007). 169173.Google Scholar
Miehe, G., Schlütz, F., Miehe, S., Opgenoorth, L., Cermak, J., Samiya, R., Juger, E.J., and Wesche, K. Mountain forest islands and Holocene environmental changes in Central Asia: a case study from the Southern Gobi Altay, Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 250, (2007). 150166.Google Scholar
Miehe, G., Miehe, S., Kaiser, K., Liu, J.Q., and Zhao, X.Q. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37, (2008). 272279.Google Scholar
Miehe, G., Kaiser, K., Co, Sonam, Zhao, X.Q., and Liu, J.Q. Geo-ecological transect studies in northeast Tibet (Qinghai, China) reveal human-made mid-Holocene environmental changes in the upper yellow river catchment changing forest to grassland. Erdkunde 62, (2008). 187199.CrossRefGoogle Scholar
Miehe, G., Miehe, S., and Schlütz, F. Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quaternary Research 71, (2009). 255265.Google Scholar
Miehe, G., Miehe, S., Kaiser, K., Reudenbach, C., Behrendes, L., Duo, La, and Schlütz, F. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography, Palaeoclimatology, Palaeoecology 276, (2009). 130147.CrossRefGoogle Scholar
Mischke, S., Herzschuh, U., Zhang, C., Bloemendal, J., and Riedel, F. A Late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Global and Planetary Change 46, (2005). 337359.Google Scholar
Morrill, C., Overpeck, J.T., and Cole, J.E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13, (2003). 465476.Google Scholar
Mosbrugger, V., Li, X.M., and Yao, T.D. The Tibetan Plateau during the Holocene — forests or no forests?. Quaternary International 167–168, (2007). 290 Google Scholar
Mueller-Dombois, D., and Ellenberg, H. Aims and Methods of Vegetation Ecology. (1974). Wiley, New York.Google Scholar
Ni, J., Yu, G., Harrison, S.P., and Prentice, I.C. Palaeovegetation in China during the late Quaternary: biome reconstruction on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology 289, (2010). 4461.Google Scholar
Opgenoorth, L., Vendramin, G.G., Mao, K.S., Miehe, G., Miehe, S., Liepelt, S., Liu, J.Q., and Ziegenhagen, B. Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. New Phytologist 185, (2010). 332342.CrossRefGoogle ScholarPubMed
Ou, Y.X. Hydrologic characteristics of the east Bangong Lake. Geological and ecological studies of Qinghai–Xizang Plateau. Liu, D.S. Proceedings of Symposium on Qinghai–Xizang (Tibet) Plateau (Beijing, China). (1981). Science Press, Beijing. 17131717.Google Scholar
Owen, L.A., Finkel, R.C., Barnard, P.L., Ma, H.Z., Asahi, K., Caffee, M.W., and Derbyshire, E. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionucleide surface exposure dating. Quaternary Science Reviews 24, (2005). 13911411.CrossRefGoogle Scholar
Owen, L.A. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Science Reviews 28, (2009). 21502164.CrossRefGoogle Scholar
Petit-Maire, N., and Bouysse, P. Cartes de environnments du monde pendent les deux derniers extremes climatiques. (2002). CCGM/GCMW, Aix-en-Provence.Google Scholar
Rauh, W. Über polsterförmigen Wuchs. Nova Acta Leopoldina, N.F. 7, (1939). 268508.Google Scholar
Schaller, G.B., and Gu, B.Y. Ungulates in northwest Tibet. National Geographic Research and Exploration 10, (1994). 266293.Google Scholar
Schickhoff, U. The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Broll, G., and Keplin, B. Mountain Ecosystems. (2005). Springer, Berlin. 275354.Google Scholar
Schlütz, F., (1999). Palynologische Untersuchungen über die holozäne Vegetations-, Klima- und Siedlungsgeschichte in Hochasien und das Pleistozän in China. Dissertationes Botanicae 315, . Borntraeger, Stuttgart.Google Scholar
Schmidt, J., Opgenoorth, L., Martens, J., and Miehe, G. Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate LGM summer temperature depression of 3 to 4 K for the southern Tibetan Plateau. Quaternary Science Reviews (2011). doi:http://dx.doi.org/10.1016/j.quascirev.2011.04.014 Google Scholar
Shen, C.M. Millenial-Scale Variations and Centennial-Scale Events in the Southwest Asian Monsoon: Pollen Evidence from Tibet. (2003). PhD Lousiana State University, Google Scholar
Shen, J., Liu, Q., Wang, S.M., and Matsumoto, R. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, (2005). 131140.Google Scholar
Shi, Y.F. Characteristics of the late Quaternary monsoonal glaciations on the Tibetan Plateau and in East Asia. Quaternary International 97, 98 (2002). 7991.CrossRefGoogle Scholar
Shi, Y.F., Yu, G., Liu, X.D., Li, B.G., and Yao, T.D. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169, (2001). 6983.Google Scholar
Stainton, J.D.A. Forests of Nepal. (1972). John Murray, London.Google Scholar
Tang, L.Y., and Shen, C.M. Late Cenozoic vegetational history and climatic characteristics of Qinghai–Xizang Plateau. Acta Micropalaeoontologica Sinica 13, (1996). 321337.Google Scholar
Tichý, L. JUICE, software for vegetation classification. Journal of Vegetation Science 13, (2002). 451453.Google Scholar
Wang, R.L., Scarpitta, S.L., Zhang, S.C., and Zheng, M.P. Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters 203, (2002). 461477.Google Scholar
Wang, L.Y., Ikeda, H., Liu, T.L., Wang, Y.J., and Liu, J.Q. Repeated range expansion and glacial endurance of Potentilla glabra (Rosaceae) in the Qinghai–Tibetan Plateau. Journal Integrative Plant Biology 51, (2009). 698706.Google Scholar
Wei, K., and Gasse, F. Oxygen isotops in lacustrine carbonates of West China revisited: implications for the postglacial changes in summer monsoon circulation. Quaternary Science Reviews 18, (1999). 13151334.CrossRefGoogle Scholar
Werdermann, E., (1931). Die Pflanzenwelt Nord- und Mittelchiles. Vegetationsbilder 21, H. 67. G. Fischer, Jena.Google Scholar
Wu, C.Y. Flora Xizangica. (1983–86). Science Press, Beijing.Google Scholar
Wu, S.G., and Feng, Z.J. The Biology and Human Physiology in the Hoh Xil Region. (1996). Science Press, Beijing.Google Scholar
Wu, C.Y., and Raven, P.H. Flora of China. (1994 ff.). Science Press, Beijing.Google Scholar
Wu, Y.S., and Xiao, J.Y. A pollen record during the past 30 000 years from the Zabuye Lake, Tibet. Marine Geology and Quaternary Geology 16, (1996). 115122. (in Chinese, engl. abstract) Google Scholar
Yu, N., Zheng, C.L., Zhang, Y.P., and Li, W.H. Molecular systematic of pikas (genus Ochotona) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 16, (2000). 8595.Google Scholar
Zhuo, Z., Baoyin, Y., and Petit-Maire, N. Palaeoenvironments in China during the Last Glacial Maximum and the Holocene optimum. Episodes 21, (1998). 152158.Google Scholar
Supplementary material: File

Miehe et al. Supplementary Material

Supplementary Material

Download Miehe et al. Supplementary Material(File)
File 3.7 MB