Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T09:22:20.410Z Has data issue: false hasContentIssue false

Dust, Clouds, Rain Types, and Climatic Variations in Tropical North Africa

Published online by Cambridge University Press:  20 January 2017

Jean Maley*
Affiliation:
Department of Zoology, Duke University, Durham, North Carolina 27706

Abstract

Dust and processes of raindrop formation in the clouds play a very important role in the climatic evolution of tropical north Africa. Sedimentologic, stratigraphic, pedologic, geomorphologic, and palynologic data converge to show that a major environmental change occurred in tropical Africa about 7000 yr B.P. In the Sudanian and Sudano–Guinean zones (wet tropical zone), from 15,000 to 7000 yr B.P., rivers deposited mostly clay, while from 7000 to 4000 yr B.P. they deposited mostly sand. During the first period, pedogenesis was vertisolic (montmorillonite dominant), associated with pollen belonging mostly to vegetation typical of hydromorphic soils, while during the second period pedogenesis was of ferruginous type (kaolinite dominant) with pollen belonging mostly to vegetation typical of well-drained soils. The great change near 7000 yr B.P. is linked chiefly to a major hydrological change that appears related to a change in the size of raindrops: from fine rains associated with considerable atmospheric dust (raindrop diameter essentially less than 2 mm) to the second period associated with thunderstorm rains (raindrop diameter mostly greater than 2 mm). The size of raindrops is related particularly to cloud thickness and dust concentration in the troposphere. Thunderstorm activity is influenced also by fluctuations of the atmospheric electricity, modulated by the sun.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspliden, C.I., Tourre, Y., Sabine, J.B., (1976). Some climatological aspects of West African disturbances lines during GATE. Monthly Weather Review 104. 10291035.Google Scholar
Aubreville, A., (1949). Contribution à la Paléohistoire des forêts de l'Afrique tropicale. Socièté Edit. Géographique, Maritime et Coloniale 99Paris.Google Scholar
Barat, C., (1957). Pluviologie et aquidimétrie dans la zone intertropicale. Mémoire de l'Institut Français d'Afrique Noire No. 49 80Dakar.Google Scholar
Battan, L.J., Braham, R.R., (1956). A study of convective precipitation based on cloud and radar observations. Journal of Meteorology 13. 587591.2.0.CO;2>CrossRefGoogle Scholar
Bernet, G., Dhonneur, G., Falque, P., Schroeder, L., (1967). Les lithométéores au Tchad. Agence pour la Sécurité de la Navigation Aérienne No. 8 24(ASECNA), Dakar.Google Scholar
Bertrand, J.J., (1976). Visibilité et brume sèche en Afrique. La Météorologie (Paris) 6. 201211.Google Scholar
Bertrand, J.J., (1977). Action des poussières subsahariennes sur le pouvoir glacogène de l'air en Afrique de l'Ouest. Thèse Science. Université de Clermont-Ferrand, France 197.Google Scholar
Bertrand, J.J., Baudet, J., Drochon, A., (1974). Importance des aérosols naturels en Afrique de l'Ouest. Journal de Recherches Atmosphériques (Clermont-Ferrand et Toulouse) 8. 845860.Google Scholar
Biscaye, P.E., (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76. 803832.Google Scholar
Bocquier, G., (1973). Genèse et évolution de deux toposéquences de sols tropicaux du Tchad. Interprétation biogéodynamique. Mémoire de l'Office de la Recherche Scientifique et Technique Outre-Mer No. 62 350(ORSTOM) (Paris).Google Scholar
Bocquier, G., Paquet, H., Millot, G., (1970). Un nouveau type d'accumulation oblique dans les paysages géochimiques: l'invasion remontante de la montmorillonite. Compte Rendu de l'Académie des Sciences (Paris) Série D 270. 460463.Google Scholar
Bucha, V., (1970). Influence of the Earth's magnetic field on radiocarbon dating. Radiocarbon Variations and Absolute Chronology Olsson, I. Almqvist & Wiksells, Stockholm 501511and Wiley, New York.Google Scholar
Burpee, R.W., (1972). The origin and structure of easterly waves in the lower troposphere of north Africa. Journal of the Atmospheric Sciences 29. 7790.Google Scholar
Byrne, R., Busby, C., Heizer, R.F., (1979). The Altithermal revisited: Pollen evidence from the Leonard rockshelter. Journal of California and Great Basin Anthropology 1. 280294.Google Scholar
Cobb, W.E., (1973). Oceanic aerosol levels deduced from measurements of the electrical conductivity of the atmosphere. Journal of the Atmospheric Sciences 30. 101106.2.0.CO;2>CrossRefGoogle Scholar
Crozat, G., Domergue, J.L., Bogui, V., Fontan, J., (1973). Etude de l'aérosol atmosphérique en Côte d'Ivoire et dans le Golfe de Guinée. Atmospheric Environment 7. 11031116.CrossRefGoogle Scholar
Dhonneur, G., (1974). Nouvelle approche des réalités météorologiques de l'Afrique occidentale et centrale. Thèse Ingénieur Docteur. Publication ASECNADakar, two volumes.Google Scholar
Dubief, J., (1952). Le vent et le déplacement du sable au Sahara. Travaux de l'Institut de Recherche Saharienne de l'Université d'Alger 8. 123164.Google Scholar
Dupont, B., (1967). Premières données sur les apports éoliens à Fort-Lamy (Tchad). Centre de l'Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), Fort-LamyRépublique du Tchad, Rapport inédit.Google Scholar
Eldridge, R.H., (1957). A synoptic study of West African disturbances lines. Quarterly Journal of the Royal Meteorological Society 83. 303314.CrossRefGoogle Scholar
Gambell, A.W., (1962). Indirect evidence of the importance of water-soluble continentally derived aerosols. Tellus 14. 9195.Google Scholar
Gunn, R., (1964). The secular increase of the worldwide fine particle pollution. Journal of the Atmospheric Sciences 21. 168181.2.0.CO;2>CrossRefGoogle Scholar
Hubert, H., (1920). Le déssèchement progressif en Afrique occidentale. Bulletin du Comité d'Etudes Historique et Scientifique de l'Afrique Occidentale Française 5. 401467.Google Scholar
Hurault, J., (1975). Surpâturage et transformation du milieu physique. Formations végétales, hydrologie de surface, géomorphologie. L'exemple des Hauts Plateaux de l'Adamaoua (Cameroun). Etudes de Photo-Interprétation de l'Institut Géographique National (Paris) No. 7 218.Google Scholar
Jalu, R., Bocquillon, M., Bonnefous, M., (1965). Tempête de sable sur le Sahara. La Météorologie (Paris) 78. 105112.Google Scholar
Junge, C.E., (1972). Our knowledge of the physicochemistry of aerosols in the undisturbed marine environment. Journal of Geophysical Research 77. 51835200.Google Scholar
Kidson, J.W., (1977). African rainfall and its relation to upper air circulation. Quarterly Journal of the Royal Meteorological Society 103. 441456.Google Scholar
Lamb, H.H., (1972). Climate: Present, Past and Future. I. Fundamentals and Climate Now Methuen, London.Google Scholar
Ludlam, F.H., (1966). Cumulus and cumulonimbus convection. Tellus 18. 687698.CrossRefGoogle Scholar
McTainsh, G., (1980). Harmattan dust deposition in northern Nigeria. Nature (London) 286. 587588.Google Scholar
Maley, J., (1972). La sédimentation pollinique actuelle dans la zone du lac Tchad (Afrique centrale). Pollen et Spores (Paris) 14. 263307.Google Scholar
Maley, J., (1973). Mécanisme des changements climatiques aux basses latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 14. 193227.Google Scholar
Maley, J., (1977). Palaeoclimates of central Sahara during the early Holocene. Nature (London) 269. 573577.Google Scholar
Maley, J., (1981). Etudes palynologiques dans le bassin du Tchad et Paléoclimatologie de l'Afrique nord tropicale de 30.000 ans à lépoque actuelle. Thèse Science. Université de Montpellier, FrancePublished in 1981, Travaux et Documents de l'ORSTOM 586Paris résumé 7p.Google Scholar
Markson, R., (1975). Solar modulation of atmospheric electrification through variation of the conductivity over thunderstorms. Possible Relationships between Solar Activity and Meteorological Phenomena Bandeen, W.R., Maran, S.P.NASA Report SP-366171178.Google Scholar
Markson, R., (1978). Solar modulation of atmospheric electrification and possible implications for the sun-weather relationship. Nature (London) 273. 103109.Google Scholar
Martin, P.S., (1963). The last 10,000 years. A fossil pollen record of the American Southwest The University of Arizona Press, Tucson.Google Scholar
Mason, B.J., (1971). The physics of clouds Oxford University Press, London/New York 671.Google Scholar
Mason, B.J., Andrews, J.B., (1960). Drop-size distribution from various types of rain. Quarterly Journal of the Royal Meteorological Society 86. 346353.Google Scholar
Michel, P., (1978). La dynamique actuelle de la géomorphologie dans le domaine soudanien de l'Ouest africain: Exemples du Mali occidental et Sénégal oriental. Geo-Eco-Trop, (Bruxelles) Journal International d'Ecologie Tropicale et de Géographie 1 Presse Universitaire du Zaïre 120.Google Scholar
Millot, G., (1978). Clay genesis. The Encyclopedia of Sedimentology Fairbridge, R.W., Bourgeois, J.Encyclopedia of Earth SciencesVol. 6 Academic Press, New York 152156.Google Scholar
Murty, A.S., Murty, B.V., (1973). Role of dust on rainfall in northwest India. Pure and Applied Geophysic 104. 614622.Google Scholar
Newell, R.E., Kidson, J.W., (1979). The tropospheric circulation over Africa and its relation to the global tropospheric circulation. Saharan Dust Morales, C.Wiley Publication 14133169New York.Google Scholar
Nouvelot, J.F., (1972). Le régime des transports solides en suspension dans divers cours d'eau du Cameroun de 1969 à 1971. Cahiers ORSTOM, Série Hydrobiologie (Paris) 9. 4774.Google Scholar
Ohring, G., Clapp, P., (1980). The effect of changes in cloud amount on the net radiation at the top of the atmosphere. Journal of the Atmospheric Sciences 37. 447454.2.0.CO;2>CrossRefGoogle Scholar
Olausson, E.O., Olsson, I.U., (1969). Varve stratigraphy in a core from the Gulf of Aden. Palaeogeography, Palaeoclimatology, Palaeoecology 6. 87103.Google Scholar
Paltridge, G.W., (1974). Global cloud cover and earth surface temperature. Journal of the Atmospheric Sciences 31. 15711576.Google Scholar
Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J.C., Thiede, J., (1978). Late Quarternary climatic changes in western tropical Africa deduced from deep-sea sedimentation off the Niger delta. Oceanologica Acta (Paris) 1. 217232.Google Scholar
Portig, W.H., (1963). Thunderstorm frequency and amount of precipitation in the tropics, especially in the African and Indian monsoon regions. Archiv für Meteorologie, Geophysik und Bioklimatologie, Series B 13. 2135.CrossRefGoogle Scholar
Prospero, J.M., Nees, R.T., (1977). Dust concentration in the atmosphere of the equatorial North Atlantic: Possible relationship to the Sahelian drought. Science 196. 11961198.Google Scholar
Quézel, P., (1965). La végétation du Sahara, du Tchad à la Mauritanie Fischer-Verlag, Stuttgart.Google Scholar
Ramage, C.S., (1971). Monsoon Meteorology. Academic Press, New York.Google Scholar
Riehl, H., El-Bakry, M., Meitin, J., (1979). Nile river discharge. Monthly Weather Review 107. 15461553.Google Scholar
Rohdenburg, H., (1977). Neue 14C-Daten aus Marokko und Spanien und ihre aussagen für die Relief und Bodenentwicklung im Holozän and jungpleistozän. Catena 4. 215228.Google Scholar
Schneider, S.H., (1972). Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. Journal of the Atmospheric Science 29. 14131422.Google Scholar
Squires, P. 1958a. The microstructure and colloidal stability of warm clouds. Part I. The relation between structure and stability. Tellus 10. 256261.Google Scholar
Squires, P. 1958b. The microstructure and colloidal stability of warm clouds. Part II. The causes of the variations in microstructure. Tellus 10. 262271.Google Scholar
Squires, P., Twomey, S., (1960). The relation between cloud droplet spectra and the spectrum of cloud nuclei. Physics of Precipitation Weickmann, H.Geophysical Monograph (Washington)5. 211219.Google Scholar
Stebbins, G.L., (1974). Flowering Plants. Evolution above the Species Level. Harvard University Press, Cambridge.Google Scholar
Sutcliffe, R.C., (1966). Weather and Climate. Weidenfeld, London.Google Scholar
Trewartha, G.T., (1961). The Earth's Problem Climates. University of Wisconsin Press, Madison.Google Scholar
Twomey, S., (1959). The influence of droplet concentration on rain formation and stability in clouds. Bulletin de l'Observatoire du Puy de Dôme 2. 3341.Google Scholar
Twomey, S., (1966). Computations of rain formation by coalescence. Journal of the Atmospheric Sciences 23. 405411.Google Scholar
Twomey, S., (1977). Atmospheric Aerosols. Developments in Atmospheric Science Vol. 7 Elsevier, Amsterdam.Google Scholar
Twomey, S., Squires, P., (1959). The influence of cloud nucleus population on the microstructure and stability of convective clouds. Tellus 11. 408411.Google Scholar
Vogt, J., (1968). Le dernier cycle de creusement et d'accumulation et les processus actuels dans les savanes des confins de Côte d'Ivoire et de Haute Volta Sixième Conférence de l'Association Scientifique de l'Ouest AfricainAbidjan8.Google Scholar
Vonnegut, B., (1963). Some facts and speculations concerning the origin and role of thunderstorm electricity Severe Local Storms. Meteorological Monographs 5. 224241.Google Scholar
Watts, W.A., (1979). Late Quaternary vegetation of central Appalachia and the New Jersey Coastal Plain. Ecological Monographs 49. 427469.Google Scholar
Watts, W.A., (1980). The Late Quaternary vegetation history of the Southeastern United States. Annual Review of Ecology and Systematics (Palo Alto) 11. 387409.Google Scholar