Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-12T14:38:41.666Z Has data issue: false hasContentIssue false

Dominant role of deglaciation in Late Pleistocene–Early Holocene sediment aggradation in the Upper Chenab valley, NW Himalaya

Published online by Cambridge University Press:  01 December 2022

Saptarshi Dey*
Affiliation:
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat - 382055, India
Naveen Chauhan
Affiliation:
Physical Research Laboratory Ahmedabad, Gujarat - 380009, India
Milan Kumar Mahala
Affiliation:
Physical Research Laboratory Ahmedabad, Gujarat - 380009, India
Pritha Chakravarti
Affiliation:
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat - 382055, India
Anushka Vashistha
Affiliation:
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat - 382055, India
Vikrant Jain
Affiliation:
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat - 382055, India
Jyotiranjan S. Ray
Affiliation:
Physical Research Laboratory Ahmedabad, Gujarat - 380009, India National Centre for Earth Science Studies, Thiruvananthapuram, Kerala - 695011, India.
*
*Corresponding author email address: saptarshi.dey@iitgn.ac.in

Abstract

Sediment transfer from the interiors of the Himalaya is complex because the archives are influenced by both glacial and monsoonal cycles. To deconvolve the coupling of glacial and monsoonal effects on sediment transfer processes, we investigate the Late Pleistocene–Holocene sediment archive in the Upper Chenab valley. Optically stimulated luminescence (OSL) ages from the archive indicate major aggradation during ca. 20–10 ka. Isotopic fingerprinting using Sr-Nd isotopes in silt fractions together with clast counts in boulder-pebble fractions indicate a decreasing Higher Himalayan sediment flux in the archive with time. Decreasing clast size, increasing clast roundness, increasing matrix to clast ratio, and dominance of the Higher Himalayan sourcing unequivocally suggest strong glacial influence during the initial stages of the archive formation. This evidence also agrees with the existing retreat ages of glaciers in the Upper Chenab valley. Results of our study also show that the upper parts of the archive contain significant fluvial sediment contribution from the Lesser Himalaya, which suggests an active role of the stronger Indian Summer Monsoon (ISM) in the region during the Early Holocene. The apparent decrease in sediment supply from the Higher Himalayan sources could have been due to longer source-to-sink transport in the Early Holocene and/or increased hillslope flux from Lesser Himalayan sources.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, B.A., Whipple, K.X., Forte, A.M., Heimsath, A.M., Hodges, K.V., 2020. Climate controls on erosion in tectonically active landscapes. Science Advances 6, eaaz3166. https://doi.org/10.1126/sciadv.aaz3166.CrossRefGoogle ScholarPubMed
Aitken, M.J., 1998. Introduction to Optical Dating: the Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Clarendon Press, Oxford, New York, Tokyo, 267 pp.Google Scholar
Bailey, R.M. and Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 24752502.CrossRefGoogle Scholar
Barnard, P.L., Owen, L.A., Finkel, R.C., 2004. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology 165, 199221.CrossRefGoogle Scholar
Bisht, P., Ali, S.N., Rana, N., Singh, S., Sundriyal, Y.P., Bagri, D.S., Juyal, N., 2017. Pattern of Holocene glaciation in the monsoon-dominated Kosa Valley, central Himalaya, Uttarakhand, India. Geomorphology 284, 130141.CrossRefGoogle Scholar
Bookhagen, B., Burbank, D.W., 2006. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters 33, L08405. https://doi.org/10.1029/2006GL026037.Google Scholar
Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M.R., Thiede, R.C., 2006. Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology 34, 601604.CrossRefGoogle Scholar
Bookhagen, B., Strecker, M.R., 2012. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth and Planetary Science Letters 327, 97110.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005a. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005b. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth and Planetary Science Letters 231, 131146.CrossRefGoogle Scholar
Chahal, P., Kumar, A., Sharma, C.P., Singhal, S., Sundriyal, Y.P., Srivastava, P., 2019. Late Pleistocene history of aggradation and incision, provenance and channel connectivity of the Zanskar River, NW Himalaya. Global and Planetary Change 178, 110128.CrossRefGoogle Scholar
Chatterjee, A., Ray, J.S., 2017. Sources and depositional pathways of mid-Holocene sediments in the Great Rann of Kachchh, India: implications for fluvial scenario during the Harappan Culture. Quaternary International 443, 177187.CrossRefGoogle Scholar
Chatterjee, A., Ray, J.S., 2018. Geochemistry of Harappan potteries from Kalibangan and sediments in the Ghaggar River: clues for a dying river. Geoscience Frontiers 9, 12031211.CrossRefGoogle Scholar
Clift, P.D., 2017. Cenozoic sedimentary records of climate-tectonic coupling in the Western Himalaya. Progress in Earth and Planetary Science 4, 39. https://doi.org/10.1186/s40645-017-0151-8.CrossRefGoogle Scholar
Clift, P.D., Giosan, L., Blusztajn, J., Campbell, I.H., Allen, C., Pringle, M., Tabrez, A.R., et al. , 2008. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 36, 7982.CrossRefGoogle Scholar
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., et al. , 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32, 733736.CrossRefGoogle Scholar
Dey, S., Bookhagen, B., Thiede, R.C., Wittmann, H., Chauhan, N., Jain, V., Strecker, M.R., 2022. Impact of Late Pleistocene climate variability on paleo-erosion rates in the western Himalaya. Earth and Planetary Science Letters 578, 117326. https://doi.org/10.1016/j.epsl.2021.117326.CrossRefGoogle Scholar
Dey, S., Thiede, R. C., Biswas, A., Chauhan, N., Chakravarti, P., Jain, V., 2021. Implications of the ongoing rock uplift in NW Himalayan interiors. Earth Surface Dynamics 9, 463485.CrossRefGoogle Scholar
Dey, S., Thiede, R.C., Schildgen, T.F., Wittmann, H., Bookhagen, B., Scherler, D., Jain, V., Strecker, M.R., 2016. Climate-driven sediment aggradation and incision since the Late Pleistocene in the NW Himalaya, India. Earth and Planetary Science Letters 449, 321331.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C., Kamp, U., 2009. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews 28, 10371054.CrossRefGoogle Scholar
Durcan, J.A., King, G.E., Duller, G.A., 2015. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology 28, 5461.CrossRefGoogle Scholar
Dutta, S., Mujtaba, S.A.I., Saini, H.S., Chunchekar, R., Kumar, P., 2018. Geomorphic evolution of glacier-fed Baspa Valley, NW Himalaya: record of late Quaternary climate change, monsoon dynamics and glacial fluctuations. Geological Society, London, Special Publications 462, 5172.CrossRefGoogle Scholar
Dutta, S., Suresh, N., Kumar, R., 2012. Climatically controlled late Quaternary terrace staircase development in the fold-and-thrust belt of the Sub Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology 356, 1626.CrossRefGoogle Scholar
Eugster, P., Scherler, D., Thiede, R.C., Codilean, A.T., Strecker, M.R., 2016. Rapid last glacial maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: new insights from 10Be-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophysical Research Letters 43, 15891597.CrossRefGoogle Scholar
Fuchs, M., Owen, L. A., 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, 636659.CrossRefGoogle Scholar
Gavillot, Y., Meigs, A.J., Sousa, F.J., Stockli, D., Yule, D., Malik, M., 2018. Late Cenozoic foreland-to-hinterland low-temperature exhumation history of the Kashmir Himalaya. Tectonics 37, 30413068.CrossRefGoogle Scholar
Gebregiorgis, D., Hathorne, E.C., Sijinkumar, A.V., Nath, B.N., Nürnberg, D., Frank, M., 2016. South Asian summer monsoon variability during the last ~54 kas inferred from surface water salinity and river runoff proxies. Quaternary Science Reviews 138, 615.CrossRefGoogle Scholar
Gibling, M.R., Tandon, S.K., Sinha, R., Jain, M., 2005. Discontinuity-bounded alluvial sequences of the southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research 75, 369385.CrossRefGoogle Scholar
GLIMS Consortium, 2005 [updated 2018]. GLIMS Glacier Database, Version 1. Distributed by NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.7265/N5V98602. Date accessed February 4, 2021.CrossRefGoogle Scholar
Godard, V., Bourlès, D.L., Spinabella, F., Burbank, D.W., Bookhagen, B., Fisher, G.B., Moulin, A., Léanni, L., 2014. Dominance of tectonics over climate in Himalayan denudation. Geology 42, 243246.CrossRefGoogle Scholar
Goodbred, S.L., Jr., Kuehl, S.A., 2000. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 10831086.2.0.CO;2>CrossRefGoogle Scholar
Huybers, P., 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508511.CrossRefGoogle ScholarPubMed
International Seismological Centre, 2021. ISC-GEM Earthquake Catalogue. https://doi.org/10.31905/d808b825. Date accessed February 4, 2021.CrossRefGoogle Scholar
Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L., Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., Bassinot, F., 2016. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle. Quaternary Science Reviews 148, 116.CrossRefGoogle Scholar
Kapannusch, R., Scherler, D., King, G., Wittmann, H., 2020. Glacial influence on Late Pleistocene 10Be-derived paleo-erosion rates in the north-western Himalaya, India. Earth and Planetary Science Letters 547, 116441. https://doi.org/10.1016/j.epsl.2020.116441.CrossRefGoogle Scholar
Khan, F., Meena, N.K., Sundriyal, Y., Sharma, R., 2022. Indian summer monsoon variability during the last 20 kyr: evidence from peat record from the Baspa Valley, northwest Himalaya, India. Journal of Earth System Science 131, 164. https://doi.org/10.1007/s12040-022-01906-0.CrossRefGoogle Scholar
Korup, O., Montgomery, D.R., Hewitt, K., 2010. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proceedings of the National Academy of Sciences 107, 53175322.CrossRefGoogle ScholarPubMed
Kotlia, B.S., Rawat, K.S., 2004. Soft sediment deformation structures in the Garbyang palaeolake: evidence for the past shaking events in the Kumaun Tethys Himalaya. Current Science-Bangalore 87, 377379.Google Scholar
Kulkarni, A.V., Bahuguna, I.M., Rathore, B.P., Singh, S.K., Randhawa, S.S., Sood, R.K., Dhar, S., 2007. Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science 92, 6974.Google Scholar
Kumar, A., Srivastava, P., Meena, N. K., 2017. Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quaternary International 443, 1328.CrossRefGoogle Scholar
Kumar, V., Jamir, I., Gupta, V., Bhasin, R. K., 2021. Inferring potential landslide damming using slope stability, geomorphic constraints, and run-out analysis: a case study from the NW Himalaya. Earth Surface Dynamics 9, 351377.CrossRefGoogle Scholar
Lane, E.W., 1955. The importance of fluvial morphology in hydraulics. Proceedings of the American Society of Civil Engineers 81(7), 117.Google Scholar
Maizels, J., 2002. Sediments and landforms of modern proglacial terrestrial environments. In: Menzies, J. (Ed.), Modern and Past Glacial Environments. Butterworth-Heinemann, Oxford, pp. 279316.CrossRefGoogle Scholar
Mandal, S.K., Scherler, D., Wittmann, H., 2021. Tectonic accretion controls erosional cyclicity in the Himalaya. AGU Advances 2, e2021AV000487. https://doi.org/10.1029/2021AV000487.CrossRefGoogle Scholar
Miller, C., Klötzli, U., Frank, W., Thöni, M., Grasemann, B., 2000. Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambrian Research 103, 191206.CrossRefGoogle Scholar
Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P., Draganits, E., 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine 138, 237251.CrossRefGoogle Scholar
Mugnier, J.L., Huyghe, P., Gajurel, A.P., Upreti, B.N., Jouanne, F., 2011. Seismites in the Kathmandu Basin and seismic hazard in central Himalaya. Tectonophysics 509, 3349.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Caffee, M.W., 2002. A note on the extent of glaciation throughout the Himalaya during the global last glacial maximum. Quaternary Science Reviews 21, 147157.CrossRefGoogle Scholar
Parkash, S., 2013. Earthquake related landslides in the Indian Himalaya: experiences from the past and implications for the future. In: Margottini, C., Canuti, P., Sassa, K. (Eds.), Landslide Science and Practice. Springer, Berlin, Heidelberg, pp. 327334.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A., 2009. Soft-sediment deformation structures in the late Quaternary sediments of Ladakh: evidence for multiple phases of seismic tremors in the north western Himalayan Region. Journal of Asian Earth Sciences 34, 761770.CrossRefGoogle Scholar
Pratt-Sitaula, B., Burbank, D.W., Heimsath, A., Ojha, T., 2004. Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya. Geomorphology 58, 223241.CrossRefGoogle Scholar
Prell, W.L., Kutzbach, J.E., 1987. Monsoon variability over the past 150,000 years. Journal of Geophysical Research: Atmospheres 92, 8411–842.CrossRefGoogle Scholar
Raup, B.H., Racoviteanu, A., Khalsa, S.S., Helm, C., Armstrong, R., Arnaud, Y., 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change 56. https://doi.org/10.1016/j.gloplacha.2006.07.018.CrossRefGoogle Scholar
Ray, Y., Srivastava, P., 2010. Widespread aggradation in the mountainous catchment of the Alaknanda-Ganga River system: timescales and implications to Hinterland-foreland relationships. Quaternary Science Reviews 29, 22382260.CrossRefGoogle Scholar
Roberts, H.M., 2007. Assessing the effectiveness of the double-SAR protocol in isolating a luminescence signal dominated by quartz. Radiation Measurements 42, 16271636.CrossRefGoogle Scholar
Scherler, D., Bookhagen, B., Wulf, H., Preusser, F., Strecker, M.R., 2015. Increased Late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth and Planetary Science Letters 428, 255266.CrossRefGoogle Scholar
Singh, A.K., Parkash, B., Mohindra, R., Thomas, J.V., Singhvi, A.K., 2001. Quaternary alluvial fan sedimentation in the Dehradun Valley piggyback basin, NW Himalaya: tectonic and palaeoclimatic implications. Basin Research 13, 449471.CrossRefGoogle Scholar
Singh, A., Ray, J.S., Jain, V., Mahala, M.K., 2022. Evaluating the connectivity of the Yamuna and the Sarasvati during the Holocene: evidence from geochemical provenance of sediment in the Markanda River Valley, India. Geomorphology 402, 108124. https://doi.org/10.1016/j.geomorph.2022.108124.CrossRefGoogle Scholar
Sinha, S., Suresh, N., Kumar, R., Dutta, S., Arora, B.R., 2010. Sedimentologic and geomorphic studies on the Quaternary alluvial fan and terrace deposits along the Ganga exit. Quaternary International 227, 87103.CrossRefGoogle Scholar
Srivastava, P., Kumar, A., Mishra, A., Meena, N.K., Tripathi, J.K., Sundriyal, Y.P., Agnihotri, R., Gupta, A.K., 2013. Early Holocene monsoonal fluctuations in the Garhwal higher Himalaya as inferred from multi-proxy data from the Malari paleolake. Quaternary Research 80, 447458.CrossRefGoogle Scholar
Srivastava, P., Tripathi, J.K., Islam, R., Jaiswal, M.K., 2008. Fashion and phases of Late Pleistocene aggradation and incision in the Alaknanda River Valley, western Himalaya, India. Quaternary Research 70, 6880.CrossRefGoogle Scholar
Steck, A., 2003. Geology of the NW Indian Himalaya. Eclogae Geologicae Helvetiae 96, 147196.Google Scholar
Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R., Trauth, M.H., 2007. Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences 35, 747787.CrossRefGoogle Scholar
Suresh, N., Bagati, T.N., Kumar, R., Thakur, V.C., 2007. Evolution of Quaternary alluvial fans and terraces in the intramontane Pinjaur Dun, Sub-Himalaya, NW India: interaction between tectonics and climate change. Sedimentology 54, 809833.CrossRefGoogle Scholar
Tofelde, S., Schildgen, T.F., Savi, S., Pingel, H., Wickert, A.D., Bookhagen, B., Wittmann, H., Alonso, R.N., Cottle, J., Strecker, M.R., 2017. 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina. Earth and Planetary Science Letters 473, 141153.CrossRefGoogle Scholar
Vannay, J.C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., Cosca, M., 2004. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23, TC1014. https://doi.org/10.1029/2002TC001429.CrossRefGoogle Scholar
Wang, W., Godard, V., Liu-Zeng, J., Scherler, D., Xu, C., Zhang, J., Xie, K., Bellier, O., Ansberque, C., de Sigoyer, J., ASTER Team, 2017. Perturbation of fluvial sediment fluxes following the 2008 Wenchuan earthquake. Earth Surface Processes and Landforms 42, 26112622.CrossRefGoogle Scholar
Whipple, K.X., 2009. The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience 2, 97104.CrossRefGoogle Scholar
Supplementary material: File

Dey et al. supplementary material

Figures S1-S2

Download Dey et al. supplementary material(File)
File 584.4 KB