Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T02:30:09.729Z Has data issue: false hasContentIssue false

Cryogenic features and stages in Late Quaternary subaerial sediments of the Lower Volga region

Published online by Cambridge University Press:  11 March 2024

N.A. Taratunina*
Affiliation:
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia Institute of Archaeology and Ethnography, Siberian Branch RAS, Novosibirsk, Russia
R.N. Kurbanov
Affiliation:
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia Institute of Geography RAS, Moscow, Russia
V.V. Rogov
Affiliation:
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
I.D. Streletskaya
Affiliation:
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
T.A. Yanina
Affiliation:
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
D.A. Solodovnikov
Affiliation:
Volgograd State University, Volgograd, Russia
T. Stevens
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
*
*Corresponding author: N.A. Taratunina; Email: taratuninana@gmail.com

Abstract

Situated at the southernmost limits of the late Pleistocene Eurasian permafrost zone, the loess–paleosol sequences of the Lower Volga region contain numerous traces of cryogenesis. Cryogenic features are represented by thin vertical wedges in loess and paleosols, and involutions and wedges in alluvial deposits. Here we describe and interpret four stages of cryogenesis during the late Pleistocene, based on analysis of cryogenic structure morphology, morphoscopy of quartz grains, and micromorphology of subaerial sediments, in addition to calculation of the Cryogenic Weathering Index and a new luminescence chronology derived from published ages. These stages differ in type and distribution of cryostructures and formed in different paleogeographic conditions. Stage I, dated 95–90 ka (Marine Isotope Stage [MIS] 5b), is characterized by the existence of continuous permafrost in northern part of the Lower Volga valley. Stage II (75–70 ka, MIS 5a/MIS 4) is characterized by dry and cold conditions and widespread permafrost. During stage III (52–45 ka, MIS 3b/c), the permafrost was thin and of sporadic distribution. Stage IV (37–35 ka, MIS 3a) is characterized by thin and rare sporadic permafrost. The processes of cryogenic transformation of sediments in the region during these stages took place under both permafrost and seasonal frost conditions. The results obtained significantly improve current understanding of the extent of the permafrost in the south of the East European Plain during the late Pleistocene.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years, Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.CrossRefGoogle Scholar
Deng, J., Wang, L., Zhang, Z.Z., Bing, H., 2010. Microstructure characteristics and forming environment of late Quaternary Period loess in the Loess Plateau of China. Environmental Earth Sciences 59, 18071817.CrossRefGoogle Scholar
Fedorov, P.V., 1957. Stratigrafiya chetvertichnykh otlozheniy i istoriya razvitiya Kaspiyskogo morya [Stratigraphy of Quaternary deposits and the history of the development of the Caspian Sea]. Trudy GIN AN SSSR, Vol. 10. AN SSSR, Moscow.Google Scholar
Feng, L., Zhang, M., Jin, Zh., Zhang, Sh., Sun, P., Gu, T., Liu, X., et al., 2021. The genesis, development, and evolution of original vertical joints in loess. Earth-Science Reviews 214, 103526.CrossRefGoogle Scholar
Gelfan, A., Kalugin, A., 2021. Permafrost in the Caspian basin as a possible trigger of the late Khvalynian Transgression: testing hypothesis using a hydrological model. Water Resources 48, 831843.Google Scholar
Kalinska-Nartiša, E., Lamsters, K., Karušs, J., Krievans, M., Rečs, A., Meija, R., 2017. Quartz grain features in modern glacial and proglacial environments: a microscopic study from the Russell Glacier, southwest Greenland. Polish Polar Research 38, 265289.CrossRefGoogle Scholar
Költringer, C., Bradák, B., Stevens, T., Almqvist, B., Banak, A., Linder, M., Kurbanov, R., et al., 2021a. Palaeoenvironmental implications from Lower Volga loess—joint magnetic fabric and multi-proxy analyses. Quaternary Science Reviews 267, 107057.Google Scholar
Költringer, C., Stevens, T., Bradák, B., Almqvist, B., Kurbanov, R., Snowball, I., Yarovaya, S., 2021b. Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quaternary Research 103, 4973.CrossRefGoogle Scholar
Költringer, C., Stevens, T., Linder, M., Baykal, Y., Ghafarpour, A., Khormali, F., Taratunina, N., Kurbanov, R., 2022. Quaternary sediment sources and loess transport pathways in the Black Sea–Caspian Sea region identified by detrital zircon U-Pb geochronology. Global and Planetary Change 209, 103736.Google Scholar
Konishchev, V.N., 1981. Formirovaniye sostava dispersnykh porod v kriolitosfere [Formation of the composition of dispersed rocks in the cryolithosphere]. Nauka, Novosibirsk.Google Scholar
Konishchev, V.N., 1999. Evolyutsiya temperatury porod arkticheskoy zony Rossii v verkhnem kaynozoye [Temperature evolution of rocks in the Arctic zone of Russia in the Upper Cenozoic]. Earth's Cryosphere 3(4), 3947.Google Scholar
Konishchev, V.N., Lebedeva-Verba, M.P., Rogov, V.V., Stalina, E.E., 2005. Kriogenez sovremennykh i pozdnepleystotsenovykh otlozheniy Altaya i periglyatsial'nykh oblastey Yevropy [Cryogenesis of modern and late Pleistocene deposits of Altai and periglacial regions of Europe]. GEOS, Moscow.Google Scholar
Konishchev, V.N., Rogov, V.V., 1994. Metody kriolitologicheskikh issledovaniy [Methods of cryolithological research]. MSU, Moscow.Google Scholar
Koriche, S.A., Singarayer, J.S., Cloke, H.L., Valdes, P.J., Wesselingh, F.P., Kroonenberg, S.B., Wickert, A.D., Yanina, T.A., 2022. What are the drivers of Caspian Sea level variation during the late Quaternary? Quaternary Science Reviews 283, 107457.Google Scholar
Krinsley, D.H., Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge.Google Scholar
Kurbanov, R., Murray, A., Thompson, W., Svistunov, M., Taratunina, N., Yanina, T., 2021. First reliable chronology for the early Khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas 50, 134146.Google Scholar
Kurbanov, R.N., Belyaev, V.R., Svistunov, M.I., Butuzova, E.A., Solodovnikov, D.A., Taratunina, N.A., Yanina, T.A., 2023. New data on the age of the early Khvalynian transgression of the Caspian Sea. [In Russian.] Izvestiya Rossiyskoy Akademii Nauk, Seriya Geograficheskay V 87, 403419.Google Scholar
Kurbanov, R.N., Buylaert, J.-P., Stevens, T., Taratunina, N.A., Belyaev, V.R., Makeev, A. O., Lebedeva, M.P., et al., 2022. A detailed luminescence chronology of the Lower Volga loess-palaeosol sequence at Leninsk. Quaternary Geochronology 73, 101376.Google Scholar
Kurchatova, A.N., Rogov, V.V., 2020. Electron Microscopy in Geocryology. TIU, Tyumen, Russia.Google Scholar
Lebedeva, M., Makeev, A., Rusakov, A., Romanis, T., Yanina, T., Kurbanov, R., Kust, P., Varlamov, E., 2018. Landscape dynamics in the Caspian Lowlands since the last deglaciation reconstructed from the pedosedimentary sequence of Srednaya Akhtuba, southern Russia. Geosciences 8, 492.Google Scholar
Makeev, A., Lebedeva, M., Kaganova, A., Rusakov, A., Kust, P., Romanis, T., Yanina, T., Kurbanov, R., 2021. Pedosedimentary environments in the Caspian Lowland during MIS 5 (Srednaya Akhtuba reference section, Russia). Quaternary International 590, 164180.CrossRefGoogle Scholar
Moskvitin, A.I., 1962. Pleystotsen Nizhnego Povolzhʹya [Pleistocene of the Lower Volga region]. Trudy GIN AN SSSR, Vol. 64. AN SSSR, Moscow.Google Scholar
Murray, A.S., Marten, R., Johnston, A., Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115, 263288.CrossRefGoogle Scholar
Murray, A.S., Thomsen, K.J., Masuda, N., Buylaert, J.-P., Jain, M., 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47, 688695.CrossRefGoogle Scholar
Panin, A.V., Sidorchuk, A.Yu, Ukraintsev, V.Yu., 2021. The contribution of glacial melt water to annual runoff of River Volga in the last glacial epoch. Water Resources 48, 877885.Google Scholar
Popov, A.I., 1960. Periglyatsial'nyye obrazovaniya Severnoy Yevrazii i ikh geneticheskiye tipy [Periglacial formations of Northern Eurasia and their genetic types]. In: Periglyatsial'nyye yavleniya na territorii SSSR [Periglacial phenomena on the territory of the USSR]. MGU, Moscow, pp. 1036.Google Scholar
Popov, A.I., 1967. Loess and loess-like rocks as a product of cryolithogenesis. [In Russian.] Vestnik MSU, seria geograficheskaya 6, 4348.Google Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106.CrossRefGoogle Scholar
Rasmussen, C.F., Christiansen, H.H., Buylaert, J.-P., Cunningham, A., Schneider, R., Knudsen, M., Stevens, T., 2023. High-resolution OSL dating of loess in Adventdalen, Svalbard: Late Holocene dust activity and permafrost development. Quaternary Science Reviews 310, 108137.Google Scholar
Shkatova, V.K., 1975. Stratigrafiya pleystotsenovykh otlozheniy nizovʹyev rek Volgi i Urala i ikh korrelyatsiya [Stratigraphy of Pleistocene deposits in the lower reaches of the Volga and Ural rivers and their correlation]. PhD thesis. VSEGEI, Leningrad.Google Scholar
Streletskaya, I.D., 2017. Wedge-shaped structures on the southern coast of the Gulf of Finland. [In Russian.] Earth's Cryosphere 21(1), 312.Google Scholar
Svitoch, A.A., 2014. The Great Caspian: Structure and History of Development. [In Russian.] MSU, Moscow.Google Scholar
Svitoch, A.A., Yanina, T.A., 1997. Chetvertichnyye otlozheniya poberezhiy Kaspiyskogo morya [Quaternary deposits of the coasts of the Caspian Sea]. RASKHN, Moscow.Google Scholar
Sycheva, S.A., 2012. Paleofrost events in the periglacial region of the Russian Plain at the end of the Middle and Late Pleistocene. [In Russian.] Earth's Cryosphere 16(4), 4556.Google Scholar
Taratunina, N.A., Buylaert, J.-P., Kurbanov, R.N., Yanina, T.A., Makeev, A.O., Lebedeva, M.P., Utkina, A.O., Murray, A.S., 2022. Late Quaternary evolution of lower reaches of the Volga River (Raygorod section) based on luminescence dating. Quaternary Geochronology 72, 101369.Google Scholar
Taratunina, N., Rogov, V., Streletskaya, I., Thompson, W., Kurchatova, A., Yanina, T., Kurbanov, R., 2021. Late Pleistocene cryogenesis features of a loess-paleosol sequence in the Srednyaya Akhtuba reference section, Lower Volga River valley, Russia. Quaternary International 590, 5672.CrossRefGoogle Scholar
Vasiliev, Yu.M., 1961. Antropogen Yuzhnogo Zavolzhʹya [Anthropocene of the southern Trans-Volga region]. AN SSSR, Moscow.Google Scholar
Velichko, A.A., 1973. Prirodnyy protsess v pleystotsene [Natural process in the Pleistocene]. Nauka, Moscow.Google Scholar
Velichko, A.A. (Ed.), 2002. Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseynov Severnoy Yevrazii za posledniye 130 000 let [Dynamics of landscape components and inland marine basins of northern Eurasia over the past 130,000 years]. GEOS, Мoscow.Google Scholar
Velichko, A.A., Borisova, O.K., Kononov, YU.M., Konstantinov, Ye.A., Kurbanov, R.N., Morozova, T.D., Panin, P.G., et al., 2017. Rekonstruktsiya sobytiy pozdnego pleystotsena v periglyatsial'noy zone yuga Vostochno-Yevropeyskoy ravniny [Reconstruction of Late Pleistocene events in the periglacial zone of the south of the East European Plain]. Doklady Akademii 475, 448452.Google Scholar
Velichko, A.A., Morozova, T.D., Nechayev, V.P., Porozhnyakova, O.M., 1996. Paleokriogenez, pochvennyy pokrov i zemledeliye [Paleocryogenesis, soil cover and agriculture]. Nauka, Moscow.Google Scholar
Vos, K., Vandenberghe, N., Elsen, J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): from sample preparation to environmental interpretation. Earth-Science Reviews 128, 93104.CrossRefGoogle Scholar
[VSEGEI] Russian Geological Research Institute, 2014. Mezhregionalnaya stratigraficheskaya skhema kvartera territorii Rossiyskoy Federatsii [Interregional stratigraphic scheme of the quarter of the territory of the Russian Federation]. Supplement to the Map of Quaternary Formations of the Territory of the Russian Federation. 1:2,500,000. St. Petersburg.Google Scholar
Woronko, B., Pisarska-Jamrozy, M., 2015. Micro-scale frost weathering of sand-sized quartz grains. Permafrost and Periglacial Processes 27, 109122.CrossRefGoogle Scholar
Yanina, T., 2020. Environmental variability of the Ponto-Caspian and Mediterranean Basins during the last climatic macrocycle. Geography, Environment, Sustainability 13, 623.CrossRefGoogle Scholar
Yanina, T.A., Svitoch, A.A., Kurbanov, R.N., Myurrey, E.S., Tkach, N.T., Sychev, N.V., 2017. Experience in dating Pleistocene deposits of the Lower Volga region by optically stimulated. [In Russian.] Vestnik MSU, seria geograficheskaya 1, 2129.Google Scholar
Zhai, J., Zhang, Z., Melnikov, A., Zhang, M., Yang, L., Jin, D., 2021. Experimental study on the effect of freeze-thaw cycles on the mineral particle fragmentation and aggregation with different soil types. Minerals 11, 913.CrossRefGoogle Scholar