Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-01T06:07:57.066Z Has data issue: false hasContentIssue false

Characterization of phreatic overgrowths on speleothems precipitated in the northern Adriatic during a sea-level stillstand at ca. 2.8 ka

Published online by Cambridge University Press:  15 January 2024

Nina Lončar*
Affiliation:
University of Zadar, Department of Geography, Trg kneza Višeslava 9, 23000 Zadar, Croatia
Sanja Faivre
Affiliation:
University of Zagreb, Faculty of Science, Department of Geography , Marulićev trg 19/II, Zagreb, Croatia
Blaž Miklavič
Affiliation:
University of Guam, Water and Environmental Research Institute of the Western Pacific (WERI), UOG Station, 303 University Dr, Mangilao, 96913, Guam
Bogdan P. Onac
Affiliation:
University of South Florida, School of Geosciences, 4202 East Fowler Avenue, NES 107, Tampa, USA
Victor J. Polyak
Affiliation:
University of New Mexico, Earth & Planetary Sciences, 221 Yale Blvd NE, NM 87131, Albuquerque, USA
Yemane Asmerom
Affiliation:
University of New Mexico, Earth & Planetary Sciences, 221 Yale Blvd NE, NM 87131, Albuquerque, USA
*
Corresponding author: Nina Lončar; Email: <nloncar@unizd.hr>

Abstract

We examined a Late Holocene sea-level stillstand using phreatic overgrowths on speleothems (POS) recovered from Medvjeđa Špilja [Bear Cave] (northern Adriatic Sea) from −1.28 ± 0.15 m below present mean sea level. Different mineralogical analyses were performed to characterize the POS and better understand the mechanisms of their formation. Results reveal that the fibrous overgrowth is formed of calcite and that both the supporting soda straw and the overgrowth have very similar trace element compositions. This suggests that the drip-water and groundwater pool from which the POS formed have similar chemical compositions. Four subsamples were dated by means of uranium-series. We found that ca. 2800 years ago, the relative sea level was stable for about 300 years at a depth of approximately −1.28 ± 0.15 m below the current mean sea level. This finding roughly corresponds with the end of a relatively stable sea-level period, between 3250 and 2800 cal yr BP, previously noted in the southern Adriatic. Our research confirms the presence of POS in the Adriatic region and establishes the Medvjeđa Špilja pool as a conducive environment for calcite POS formation, which encourages further investigations at this study site.

Type
Thematic Set: Speleothem Paleoclimate
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alessio, M., Allegri, L., Antonioli, F., Belluomini, G., Ferranti, L., Importa, S., Manfra, L., Proposito, A., 1992. Risultati preliminari relativi alla datazione di speleotemi sommersi nelle fasce costiere del Tirreno centrale. Giornale di Geologia ser. 3, 54, 165193.Google Scholar
Alessio, M., Allegri, L., Antonioli, F., Belluomini, G., Improta, S., Manfra, L., Preite Martinez, M., 1994. La curva di risalita del mare Tirreno negli ultimi 43 ka ricavata da datazioni su speleotemi sommersi e dati archeologici. Memorie Descrittive Della Carta Geologica d'Italia LII, 261276.Google Scholar
Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., Orru, P., et al., 2007. Sea level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews 26, 24632486.Google Scholar
Antonioli, F., Bard, E., Potter, E.-K., Silenzi, S., Improta, S., 2004a. 215-ka history of sea-level oscillations from marine and continental layers in Argentarola Cave speleothems (Italy). Global and Planetary Change 43, 5778.Google Scholar
Antonioli, F., Carulli, G.B., Furlani, S., Auriemma, R., Marocco, R., 2004b. The enigma of the submerged marine notches in the northern Adriatic Sea. Quaternaria Nova 8, 263275.Google Scholar
Antonioli, F., Cremona, G., Immordino, F., Puglisi, C., Romagnoli, C., Silenzi, S., Valpreda, E., Verrubbi, V., 2002. New data on the Holocenic sea-level rise in NW Sicily (central Mediterranean Sea). Global and Planetary Change 34, 121140.Google Scholar
Antonioli, F., Furlani, S., Montagna, P., Stocchi, P., 2021. The use of submerged speleothems for sea level studies in the Mediterranean Sea: a new perspective using glacial isostatic adjustment (GIA). Geosciences 11, 77. https://doi.org/10.3390/geosciences11020077.Google Scholar
Antonioli, F., Oliverio, M., 1996. Holocene sea-level rise recorded by a radiocarbon-dated mussel in a submerged speleothem beneath the Mediterranean Sea. Quaternary Research 45, 241244.Google Scholar
Asmerom, Y., Polyak, V., Schwieters, J., Bouman, C., 2006. Routine high-precision U–Th isotope analyses for paleoclimate chronology. Geochemica et Cosmochimica Acta 70, A24. https://doi.org/10.1016/j.gca.2006.06.061.Google Scholar
Bard, E., Antonioli, F., Silenzi, S., 2002. Sea-level during the penultimate interglacial period based on a submerged stalagmite from Argentarola Cave (Italy). Earth and Planetary Science Letters 196, 135146.Google Scholar
Benac, Č., Juračić, M., Bakran-Petricioli, T., 2004. Submerged tidal notches in the Rijeka Bay NE Adriatic Sea: indicators of relative sea-level change and of recent tectonic movements. Marine Geology 212, 2133.Google Scholar
Bonacci, O., Roje-Bonacci, T., 2003. Groundwater on small Adriatic islands. RMZ – Materials and Geoenvironment 50, 4144.Google Scholar
Boulton, S.J., Stewart, I.S., 2015. Holocene coastal notches in the Mediterranean region: indicators of palaeoseismic clustering? Geomorphology 237, 2937.Google Scholar
Brunović, D., Miko, S., Hasan, O., Papatheodorou, G., Ilijanić, N., Miserocchi, S., Correggiari, A., Geraga, M., 2020. Late Pleistocene and Holocene paleoenvironmental reconstruction of a drowned karst isolation basin (Lošinj Channel, NE Adriatic Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 544, 109587. https://doi.org/10.1016/j.palaeo.2020.109587.Google Scholar
Brunović, D., Miko, S., Ilijanić, N., Peh, Z., Hasan, O., Kolar, T., Šparica Miko, M., Razum, I., 2019. Holocene foraminiferal and geochemical records in the coastal karst dolines of Cres Island, Croatia. Geologia Croatica 72, 1942.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrome, J., et al., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371, 8291.Google Scholar
CMHS, 2022. Croatian Meteorological and Hydrological Service. https://meteo.hr/index_en.php.Google Scholar
Csoma, A.É., Goldstein, R.H., Pomar, L., 2006. Pleistocene speleothems of Mallorca: implications for palaeoclimate and carbonate diagenesis in mixing zones. Sedimentology 53, 213236.Google Scholar
Degrassi, A., 1955. I Porti Romani Dell'Istria. Anthemon, Firenze, 169 pp.Google Scholar
de Joly, R., 1929. Explorations spéléologiques à Majorque (1929). Revue de Géographie Physique et de Géologie Dynamique 2, 233245.Google Scholar
De Waele, J., D'Angeli, I.M., Bontognali, T., Tuccimei, P., Scholz, D., Jochum, K.P., Columbu, A., et al., 2018. Speleothems in a north Cuban cave register sea-level changes and Pleistocene uplift rates. Earth Surface Processes and Landforms 43, 23132326.Google Scholar
De Waele, J., D'Angeli, I.M., Tisato, N., Tuccimei, P., Soligo, M., Ginés, J., Ginés, A., et al., 2017. Coastal uplift rate at Matanzas (Cuba) inferred from MIS5e phreatic overgrowths on speleothems. Terra Nova 29, 98105.Google Scholar
Dorale, J.A., Onac, B.P., Fornós, J.J., Ginés, J., Ginés, A., Tuccimei, P., Peate, D.W., 2010. Sea-level highstand 81,000 years ago in Mallorca. Science 327, 860863.Google Scholar
Dumitru, O.A., Polyak, V.J., Asmerom, Y., Onac, B.P., 2021. Last interglacial sea-level history from speleothems: a global standardized database. Earth System Science Data 13, 20772094.Google Scholar
Faivre, S., Bakran-Petricioli, , Kaniewski, D., Marriner, N., Tomljenović, B., Sečanj, M., Horvatić, D., Barešić, J., Morhange, C., Drysdale, R.N., 2023. Driving processes of relative sea-level change in the Adriatic during the past two millennia: from local tectonic movements in the Dubrovnik archipelago (Jakljan and Šipan islands) to global mean sea level contributions (Central Mediterranean). Global and Planetary Change 227, 104158.Google Scholar
Faivre, S., Bakran-Petricioli, T., Barešić, J., Horvatić, D., 2021a. Lithophyllum rims as biological markers for constraining palaeoseismic events and relative sea-level variations during the last 3.3 ka on Lopud Island, southern Adriatic, Croatia. Global and Planetary Change 202, 103517.Google Scholar
Faivre, S., Bakran-Petricioli, T., Barešić, J., Horvatić, D., Macario, K., 2019. Relative sea-level change and climate change in the northeastern Adriatic during the last 1.5 ka (Istria, Croatia). Quaternary Science Reviews 222, 105909.Google Scholar
Faivre, S., Bakran-Petricioli, T., Herak, M., Barešić, J., Borković, D., 2021b. Late Holocene interplay between coseismic uplift events and interseismic subsidence at Koločep Island and Grebeni islets in the Dubrovnik archipelago (southern Adriatic, Croatia). Quaternary Science Reviews 274, 107284.Google Scholar
Faivre, S., Bakran-Petricioli, T., Horvatinčić, N., Sironić, A., 2013. Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—influence of climatic variations? Palaeogeography, Palaeoclimatology, Palaeoecology 369, 163174.Google Scholar
Faivre, S., Butorac, V., 2018. Recently submerged tidal notches in the wider Makarska area (central Adriatic, Croatia). Quaternary International 494, 225235.Google Scholar
Faivre, S., Fouache, E., 2003. Some tectonic influences on the Croatian shoreline evolution in the last 2000 years. Zeitschrift für Geomorphologie 47, 521537.Google Scholar
Faivre, S., Fouache, E., Ghilardi, M., Antonioli, F., Furlani, S., Kovačić, V., 2011a. Relative sea level change in western Istria (Croatia) during the last millennium. Quaternary International 232, 132143.Google Scholar
Faivre, S., Pahernik, M., Maradin, M., 2011b. The gully of Potovošća on the Island of Krk – the effects of a short-term event. Geologia Croatica 64, 6476.Google Scholar
Florido, E., Auriemma, R., Faivre, S., Radić Rossi, I., Antonioli, F., Furlani, S., Spada, G., 2011. Istrian and Dalmatian fishtanks as sea level markers. Quaternary International 232, 105113.Google Scholar
Fornós, J. J., Gelabert, B., Ginés, A., Ginés, J., Tuccimei, P., Vesica, P., 2002. Phreatic overgrowths on speleothems: a useful tool in structural geology in littoral karstic landscapes. The example of eastern Mallorca (Balearic Islands). Geodinamica Acta 15, 113125.Google Scholar
Fouache, E., Faivre, S., Dufaure, J-J., Kovačić, V., Tassaux, F., 2000. New observations on the evolution of the Croatian shoreline between Poreč and Zadar over the past 2000 years. Zeitschrift für Geomorphologie 122 (supplement), 346.Google Scholar
Gascoyne, M., Benjamin, G.J., Schwarcz, H.P., Ford, D.C., 1979. Sea-level lowering during the Illinoian Glaciation: evidence from a Bahama “Blue Hole”. Science 205, 806808.Google Scholar
Ginés, A., Ginés, J., 1974. Consideraciones sobre los mecanismos de fosilización de la Cova de sa Bassa Blanca y su paralelismo con las formaciones marinas del Cuaternario. Boletin de la Sociedad de Historia Natural de las Baleares 19, 1128.Google Scholar
Ginés, J., Fornós, J.J., Ginés, Á., 2005. Els espeleotemes freàtics del Quaternari de Mallorca: aspectes morfològics, mineralògics i cristalogràfics. In: Sanjaume, E., Mateu, J.F. (Eds.), Geomorfologia Litoral i Quaternari. Homenatge al Professor Vicenç M. Rosselló i Verger. Universitat de València, València, pp. 151165. [in Catalan]Google Scholar
Ginés, J., Ginés, A., Fornós, J.J., Tuccimei, P., Onac, B.P., Gràcia, F., 2012. Phreatic overgrowths on speleothems (POS) from Mallorca, Spain: updating forty years of research. In: Ginés, A., Ginés, J., Gómez-Pujol, L., Onac, B.P., Fornós, J.J. (Eds.), Mallorca: A Mediterranean Benchmark for Quaternary Studies. Monografies de la Societat d'Història Natural de les Balears 18, 111146.Google Scholar
Ginés, J., Ginés, A., Pomar, L., 1981. Morphological and mineralogical features of phreatic speleothems occurring in coastal caves of Majorca (Spain). In: Beck, B.F. (Ed.), Proceedings of the Eighth International Congress of Speleology, Bowling Green, Kentucky 2, 529532.Google Scholar
Gnirs, A., 1908. Beobachtungen über den Fortschritt einer säkularen Niveauschwankung des Meeres während des letzten zwei Jahrtausende. Mitteilungen der Kaiserlich–Königlichen Geographischen Gesellschaft 51, 156.Google Scholar
Harmon, R.S., Schwarcz, H.P., Ford, D.C., 1978. Late Pleistocene sea level history of Bermuda. Quaternary Research 9, 205218.Google Scholar
Herwegh, M., 2000. A new technique to automatically quantify microstructures of fine grained carbonate mylonites: two-step etching combined with SEM imaging and image analysis. Journal of Structural Geology 22, 391400.Google Scholar
Ilijanić, N., Miko, S., Ivkić Filipović, I., Hasan, O., Šparica Miko, M., Petrinec, B., Terzić, J., Marković, T., 2022. A Holocene sedimentary record and the impact of sea-level rise in the karst lake Velo Blato and the wetlands on Pag Island (Croatia). Water 14, 342. https://doi.org/10.3390/w14030342.Google Scholar
Jalžić, B., 2007. Medvjeđa Špilja na otoku Lošinju. Speleolog 55, 4555. [in Croatian]Google Scholar
Jenson, A., Schwartz, B., Li, Y., Gao, Y., 2018. The implications and limitations of phreatic overgrowths of speleothems as sea level indicators: Quintana Roo, Mexico. Geological Society of America Abstracts with Programs 50 (6), 147–146. https://doi.org/10.1130/abs/2018AM-318501.Google Scholar
Kagan, E.J., Langgut, D., Boaretto, E., Neumann, F.H., Stein, M., 2015. Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237252.Google Scholar
Kaniewski, D., Marriner, N., Cheddadi, R., Morhange, C., Vacchi, M., Rovere, A., Faivre, S., et al., 2021. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Global and Planetary Change 204, 103570. doi.org/10.1016/j.gloplacha.2021.103570.Google Scholar
Kaniewski, D., Paulissen, E., Van Campo, E., Weiss, H., Otto, T., Bretschneider, J., Van Lerberghe, K., 2010. Late second–early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean. Quaternary Research 74, 207215.Google Scholar
Korbar, T., 2009. Orogenic evolution of the External Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-Science Reviews 96, 296312.Google Scholar
Langgut, D, Finkelstein, I., Litt, T., Neumann, F.H., Stein, M., 2015. Vegetation and climate changes during the Bronze and Iron ages (~3600–600 BCE) in the southern Levant based on palynological records. Radiocarbon 57, 217235.Google Scholar
Li, W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., McNutt, R., Williams, D., 1989. High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature 339, 534536.Google Scholar
Ljungqvist, F.C., 2010. A new reconstruction of temperature variability in the extratropical Northern Hemisphere during the last two millennia. Geografiska Annaler 92, 339351.Google Scholar
Lončar, N., Bar-Matthews, M., Ayalon, A., Faivre, S., Surić, M., 2019. Holocene climatic conditions in the eastern Adriatic recorded in stalagmites from Strašna Peć Cave (Croatia). Quaternary International 508, 98106.Google Scholar
Lončar, N., Bar-Matthews, M., Ayalon, A., Surić, M., Faivre, S., 2017. Early and mid-Holocene environmental conditions in the eastern Adriatic recorded in speleothems from Mala Špilja Cave and Velika Špilja cave (Mljet Island, Croatia). Acta Carsologica 46, 229249.Google Scholar
Malez, M., Božičević, S., 1965. The Medvjeđa Pećina (Bear Cave) on Lošinj Island, a rare case of submerged cave. In: Stelcl, O. (Ed.), International Speleological Conference, Brno, Problems of Speleological Research, 29th June–4th July 1964, Prague, pp. 211216.Google Scholar
Malez, M., Sliepčević, A., Srdoč, D., 1979. Određivanje starosti metodom radioaktivnog ugljika kvartarnim naslagama na nekim lokalitetima u Dinarskom kršu [Radiocarbon dating of Quaternary deposits on some localities in Dinaric karst]. Rad JAZU, 383, Razred za prirodne znanosti 18, 227271. [in Croatian]Google Scholar
Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., Ni, F., 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences USA 105, 1325213257.Google Scholar
Marriner, N., Kaniewski, D., Pourkerman, M., Devillers, B., 2022. Anthropocene tipping point reverses long-term Holocene cooling of the Mediterranean Sea: a meta-analysis of the basin's sea surface temperature records. Earth-Science Reviews 227, 103986. https://doi.org/10.1016/j.earscirev.2022.103986.Google Scholar
Marriner, N., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., Boetto, G., Radić Rossi, I., 2014. Post-Roman sea-level changes on Pag Island (Adriatic Sea): dating Croatia's “enigmatic” coastal notch? Geomorphology 221, 8394.Google Scholar
Miklavič, B., Yokoyama, Y., Urata, K., Miyairi, Y., Kan, H., 2018. Holocene relative sea level history from phreatic overgrowths on speleothems (POS) on Minami Daito Island, Northern Philippine Sea. Quaternary International 471, 359368.Google Scholar
Onac, B.P., Ginés, A., Ginés, J., Fornós, J.J., Dorale, J.A., 2012. Late Quaternary sea-level history: a speleothem perspective. In Ginés, A., Ginés, J., Gómez-Pujol, L., Onac, B.P., Fornós, J.J. (Eds.), Mallorca: A Mediterranean Benchmark for Quaternary Studies. Monografies de la Societat d'Història Natural de les Balears 18, 147161.Google Scholar
Onac, B.P., Mitrovica, J.X., Ginés, J., Asmerom, Y., Polyak, V.J., Tuccimei, P., Ashe, E.L., et al., 2022. Exceptionally stable preindustrial sea level inferred from the western Mediterranean Sea. Science Advances 8, eabm6185. https://doi.org/10.1126/sciadv.abm6185.Google Scholar
Onset, 2022., HOBO® U20 Water Level Logger (U20-001-0x and U20-001-0x-Ti) Manual. https://www.onsetcomp.com/sites/default/files/resources-documents/12315-J%20U20%20Manual.pdf.Google Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346.Google Scholar
PAGES 2k Consortium, 2019. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience 12, 643649.Google Scholar
Polyak, V.J., Onac, B.P., Fornós, J.J., Hay, C., Asmerom, Y., Dorale, JA., Ginés, J., Tuccimei, P., Ginés, A., 2018. A highly resolved record of relative sea level in the western Mediterranean Sea during the last interglacial period. Nature Geoscience 11, 860864.Google Scholar
Rodés, L., 1925. Los cambios de nivel en las Cuevas del Drach (Manacor, Mallorca) y suoscilación rítmica de 40 minutos. Memorias de la Real Academia de Ciencias y Artes de Barcelona 19, 207221.Google Scholar
Rohling, E.J., Mayewsky, P.A., Hayes, A., Abu-Zied, R.H., Casford, J.S.L., 2002. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, 587593.Google Scholar
Schmid, S.M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., et al., 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research 78, 308374.Google Scholar
Shennan, I., Long, A., Benjamin, A., Horton, P., 2015. Introduction. In: Shennan, I., Long, A., Benjamin, A., Horton, P. (Eds.), Handbook of Sea-Level Research. John Wiley & Sons, Hoboken, pp. 12.Google Scholar
Špelić, M., Del Ben, A., Petrinjak, K., 2021. Structural setting and geodynamics of the Kvarner area (northern Adriatic). Marine and Petroleum Geology 125, 104857. https://doi.org/10.1016/j.marpetgeo.2020.104857.Google Scholar
Stocchi, P., Antonioli, F., Montagna, P., Pepe, F., Lo Presti, V., Caruso, A., Corradino, M., et al., 2017. A stalactite record of four relative sea-level highstands during the Middle Pleistocene Transition. Quaternary Science Reviews 173, 92100.Google Scholar
Surić, M., Columbu, A., Lončarić, R., Bajo, P., Bočić, N., Lončar, N., Drysdale, R., Hellstrom, J.C., 2021 - Holocene hydroclimate changes in continental Croatia recorded in speleothem δ13C and δ18O from Nova Grgosova Cave. The Holocene, 31, 14011416.Google Scholar
Surić, M., Jalžić, B., Petricioli, D., 2007. Submerged speleothems – expect the unexpected. Examples from the eastern Adriatic coast (Croatia). Acta Carsologica 36, 389396.Google Scholar
Surić, M., Juračić, M., 2010. Late Pleistocene–Holocene environmental changes – records from submerged speleothems along the eastern Adriatic coast (Croatia). Geologia Croatica 63, 155169.Google Scholar
Surić, M., Juračić, M., Horvatinčić, N., Krajcar Bronić, I., 2005. Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the eastern Adriatic coast (Croatia). Marine Geology 214, 163175.Google Scholar
Surić, M., Korbar, T., Juračić, M., 2014. Tectonic constraints on the Late Pleistocene–Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology 220, 93103.Google Scholar
Surić, M., Lončarić, R., Lončar, N., 2010. Submerged caves of Croatia: distribution, classification and origin. Environmental Earth Sciences 61, 14731480.Google Scholar
Surić, M., Richards, D.A., Hoffmann, D.L., Tibljaš, D., Juračić, M., 2009. Sea-level change during MIS 5a based on submerged speleothems from the eastern Adriatic Sea (Croatia). Marine Geology 262, 6267.Google Scholar
Tuccimei, P., Ginés, J., Delitala, M.C., Ginés, A., Gràcia, F., Fornós, J.J., Taddeucci, A., 2006. Last interglacial sea level changes in Mallorca Island (Western Mediterranean). High precision U-series data from phreatic overgrowths on speleothems. Zeitschrift für Geomorphologie 50, 121.Google Scholar
Tuccimei, P., Onac, B.P., Dorale, J.A., Ginés, J., Fornós, J.J., Ginés, A., Spada, G., Ruggieri, G., Mucedda, M., 2012. Decoding last interglacial sea-level variations in the western Mediterranean using speleothem encrustations from coastal caves in Mallorca and Sardinia: a field data–model comparison. Quaternary International 262, 5664.Google Scholar
Tuccimei, P., Soligo, M., Ginés, J., Ginés, A., Fornós, J., Kramers, J., Villa, I.M., 2010. Constraining Holocene sea levels using U–Th ages of phreatic overgrowths on speleothems from coastal caves in Mallorca (Western Mediterranean). Earth Surface Processes and Landforms 35, 782790.Google Scholar
Tuccimei, P., Van Strydonck, M., Ginés, A., Ginés, J., Soligo, M., Villa, I., Fornós, J., 2011. Comparison of 14C and U–Th ages of two Holocene phreatic overgrowths on speleothems from Mallorca (western Mediterranean): environmental implications. International Journal of Speleology 40, 18.Google Scholar
Vacchi, M., Gatti, G., Kulling, B., Morhange, C., Marriner, N., 2022. Climatic control on the formation of marine-notches in microtidal settings: new data from the northwestern Mediterranean Sea. Marine Geology 453, 106929. https://doi.org/10.1016/j.margeo.2022.106929.Google Scholar
van de Plassche, O. (Ed.). 1986. Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geo Books, Norwich, UK, 618 pp.Google Scholar
van Hengstum, P.J., Richards, D.A., Onac, B.P., Dorale, J.A., 2015. Coastal caves and sinkholes. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of Sea-Level Research. John Wiley & Sons, Hoboken, pp. 83103.Google Scholar
van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Matenco, L.C., Maffione, M., Vissers, R. Gürer, D., Spakman, W., 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research 81, 79229.Google Scholar
Vermeesch, P., 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 14791493.Google Scholar
Vesica, P. L., Tuccimei, P., Turi, B., Fornós, J. J., Ginés, A., Ginés, J., 2000. Late Pleistocene paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quaternary Science Reviews 19, 865879.Google Scholar
Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005. Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 333360.Google Scholar
Zanchetta, G., Van Welden, A., Baneschi, I., Drysdale, R., Sadori, L., Roberts, N., Giardini, M., Beck, C., Pascucci, V., Sulpizio, R., 2012. Multiproxy record for the last 4500 years from Lake Shkodra (Albania/Montenegro). Journal of Quaternary Science 27, 780789.Google Scholar