Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:36:24.662Z Has data issue: false hasContentIssue false

Carbon and oxygen stable isotope compositions of late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland)

Published online by Cambridge University Press:  20 January 2017

Laureline Scherler*
Affiliation:
Institut des Sciences de l'Evolution, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier, France Paléontologie A16, Office de la Culture, République et Canton du Jura, Hôtel des Halles, CH-2900 Porrentruy, Switzerland
Thomas Tütken
Affiliation:
Institut für Geowissenschaften, AG für Angewandte und Analytische Paläontologie, Johannes Gutenberg-Universität Mainz, J.-J.-Becher-Weg 21, D-55099 Mainz, Germany
Damien Becker
Affiliation:
JURASSICA Muséum, Route de Fontenais 21, CH-2900 Porrentruy, Switzerland
*
*Corresponding author. E-mail address:laureline.scherler@net2000.ch (L. Scherler), tuetken@uni-mainz.de (T. Tütken), damien.becker@jura.ch(D. Becker).

Abstract

Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51–27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from − 14.5 to − 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4–δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51–27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F. Latitudinal temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: δ18O record of continental vertebrates. Earth and Planetary Science Letters 226, (2004). 255272.Google Scholar
Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.-V., Hatté, C., and Fontugne, M. High-resolution record of the last interglacial–glacial cycle in the Nussloch loess-paleosol sequences, Upper Rhine Area, Germany. Quaternary International 76, 77 (2001). 211229.Google Scholar
Arppe, L., and Karhu, J.A. Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age. Quaternary Science Reviews 29, (2010). 12631275.Google Scholar
Aubry, D., Guélat, M., Detrey, J., and Othenin-Girard, B. Dernier cycle glaciaire et occupations paléolithiques à Alle, Noir Bois (Jura, Suisse). Porrentruy, Office du patrimoine historique et Société jurassienne d'Emulation. Cahier d'archéologie jurassienne 10, (2000). 175 Google Scholar
Ayliffe, L.K., Lister, A.M., and Chivas, A.R. The preservation of glacial–interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99, (1992). 179191.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., and Lancelot, Y. The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth and Planetary Science Letters 126, (1994). 91108.Google Scholar
Becker, D., Aubry, D., and Detrey, J. Les dolines du Pléistocène supérieur de la combe de “Vâ Tche Tchâ” (Ajoie, Suisse): un piège à reste de mammifères et artéfacts lithiques. Quaternaire 20, (2009). 135148.Google Scholar
Becker, D., Oppliger, J., Thew, N., Scherler, L., Aubry, D., and Braillard, L. Climat et écologie en Ajoie durant la seconde partie du Pléniglaciaire moyen weichsélien: apport des remplissages des dolines de Courtedoux-Vâ Tche Tchâ (Jura, Suisse). Richard, A., Schifferdecker, F., Mazimann, J.-P., and Bélet-Gondat, C. Le peuplement de l'arc jurassien de la préhistoire au Moyen Âge. Deuxièmes Journées Archéologiques Frontalières de l'Arc Jurassien, Acte des rencontres 2007, Annales Littéraires de l'Université de Franche-Comté et Cahier d'archéologie jurassienne, Besançon-Porrentruy (2013). 1324.Google Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F., and Jaubert, J. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Sciecne Letters 283, (2009). 133143.CrossRefGoogle Scholar
Blockey, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S.O., Seierstad, I.K., Steffensen, J.P., Svensson, A., Lotter, A.F., Turney, Chris S., and Ramsey, C.B. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE1 event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36, (2012). 210.Google Scholar
Braillard, L. Rôle de la tectonique et de la stratigraphie dans la formation des vallées sèches de l'Ajoie (JU-Suisse). Geofocus 14, (2006). 224 Google Scholar
Braillard, L. Remplissages quaternaires et paléohydrologie des vallées sèches d'Ajoie (Jura tabulaire, Suisse). Geographica Helvetica 64, 3 (2009). 148156.Google Scholar
Brugal, J.-P., and Croitor, R. Evolution, ecology and biochronology of herbivore associations in Europe during the last 3 million years. Quaternaire 18, (2007). 129152.Google Scholar
Bryant, J.D., and Froelich, P.N. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59, (1995). 45234537.Google Scholar
Bryant, J.D., Froelich, P.N., Showers, W.J., and Genna, B.J. Biologic and climatic signals in the oxygen isotopic composition of Eocene–Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126, (1996). 7589.Google Scholar
Cerling, T.E., and Harris, J.M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and palaeoecological studies. Oecologia 120, (1999). 347363.CrossRefGoogle Scholar
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leaky, M.G., Quade, J., Eisenmann, V., and Ehleringer, J.R. Global vegetation change through the Miocene–Pliocene boundary. Nature 389, (1997). 153158.Google Scholar
Cerling, T.E., Hart, J.A., and Hart, T.B. Stable isotope ecology in the Ituri Forest. Oecologia 138, (2004). 512.Google Scholar
Clementz, M.T., Goswani, A., Gingerich, P.D., and Koch, P.L. Isotopic records from early whales and sea cows: contrasting patterns of ecological transition. Journal of Vertebrate Paleontology 26, (2006). 355370.CrossRefGoogle Scholar
Coplen, T.B., Kendall, C., and Hopple, J. Comparison of stable isotope reference samples. Nature 302, (1983). 236238.CrossRefGoogle Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.CrossRefGoogle Scholar
De Beaulieu, J.-L., and Reille, M. The last climatic cycle at La Grande Pile (Vosges, France) a new pollen profile. Quaternary Science Reviews 11, (1992). 431438.CrossRefGoogle Scholar
Delgado Huertas, A., Iacumin, P., Stenni, B., Chillón, S., and Longinelli, A. Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59, (1995). 42994305.Google Scholar
Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., and Freeman, K.H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences 107, (2010). 57385743.CrossRefGoogle ScholarPubMed
Fabre, M., Lécuyer, C., Brugal, J.-P., Amiot, R., Fourel, F., and Martineau, F. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quaternary Research 85, (2011). 605613.Google Scholar
Farquhar, G.D., Ehleringer, J.R., and Hubrick, K.T. Carbon isotopic discrimination and photosynthesis. Annual Reviews of Plant Physiology and Molecular Biology 40, (1989). 503537.Google Scholar
Feranec, R.S. Stable carbon isotope values reveal evidence of resource partitioning among ungulates from modern C3-dominated ecosystems in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 252, (2007). 575585.CrossRefGoogle Scholar
Feranec, R.S., and MacFadden, B.J. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32, (2006). 191205.Google Scholar
Fricke, H.C., and O'Neil, J.R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126, (1996). 9199.Google Scholar
Fricke, H.C., and O'Neil, J.R. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170, (1999). 181196.Google Scholar
Fricke, H.C., Clyde, W.C., and O'Neil, J.R. Intra-tooth variations in δ18OPO4 of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62, (1998). 18391850.Google Scholar
García-Alix, A., Delgado Huertas, A., and Martín Suárez, E. Unravelling the Late Pleistocene habitat of the southernmost woolly mammoths in Europe. Quaternary Science Reviews 32, (2012). 7585.CrossRefGoogle Scholar
Guélat, M. Le Quaternaire dans le canton du Jura. Actes de la Société jurassienne d'Emulation 108, (2005). 931.Google Scholar
Gygi, R. Integrated stratigraphy of the Oxfordian and Kimmeridgian (Late Jurassic) in northern Switzerland and adjacent southern Germany. Denkschriften der Schweizerischen Akademie der Naturwissenschaften 104, (2000). 1151.Google Scholar
Haq, B.U. The Geological Time Scale. Sixth edition (Wall Chart) (2007). Elsevier, Google Scholar
Heaton, T.H.E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for paleodiet studies. Journal of Archaeological Science 26, (1999). 637649.Google Scholar
Hoppe, K.A. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: implications for paleoclimatic reconstructions. Earth and Planetary Sciences Letters 244, (2006). 408417.CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dalh-Jensen, D., Steffensen, J.P., Shoji, H., Sweinbjörnsdóttir, A.E., White, J., Jouzel, J., and Fisher, D. The δ18O record along the Greenland Ice-core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, (1997). 2639726410.CrossRefGoogle Scholar
Johnson, C.N. Determinants of loss of mammal species during the Late Quaternary “megafauna” extinctions: life history and ecology, but not body size. Proceedings of the Royal Society B 269, (2002). 22212227.CrossRefGoogle Scholar
Kahlke, R.-D. The History of the Origin, Evolution and Dispersal of the Late Pleistocene MammuthusCoelodonta Faunal Complex in Eurasia (Large Mammals). (1999). Mammoth Site of Hot Springs, Rapid City. (219 pp.)Google Scholar
Koch, P.L. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26, (1998). 573613.Google Scholar
Koch, P.L. Isotopic study of the biology of modern and fossil vertebrates. Michener, R., and Lajtha, K. Stable Isotopes in Ecology and Environmental Science. (2007). Blackwell, Oxford. 99154.Google Scholar
Koch, P.L., Tuross, N., and Fogel, M.L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, (1997). 417429.CrossRefGoogle Scholar
Kohn, M.J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, (1996). 48114829.CrossRefGoogle Scholar
Kohn, M.J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences 107, (2010). 1969119695.CrossRefGoogle ScholarPubMed
Kohn, M.J., and Cerling, T.E. Stable isotope compositions of biological apatite. Kohn, M.J., Rakovan, J., Hughes, J.M. Reviews in Mineralogy and Geochemistry 48, (2002). 455488.Google Scholar
Levin, N.E., Cerling, T.E., Passey, B.H., Harris, J.M., and Ehleringer, J.R. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103, (2006). 1120111205.Google Scholar
Longinelli, A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?. Geochimica et Cosmochimica Acta 48, (1984). 385390.CrossRefGoogle Scholar
Luz, B., Cormie, A.B., and Schwarz, H.P. Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54, (1990). 17231728.Google Scholar
Manzi, G. Before the emergence of Homo sapiens: overview on the Early-to-Middle Pleistocene fossil record (with a proposal about Homo heidelbergensis at the subspecific level). International Journal of Evolutionary Biology (2011). http://dx.doi.org/10.4061/2011/582678 (11 pp.)Google Scholar
Markova, A.K., Puzachenko, A.Y., and Van Kolfschoten, T. The North Eurasian mammal assemblages during the end of MIS3 (Brianskian–Late Karginian–Denekamp Interstadial). Quaternary International 212, (2009). 149158.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., and Shackelton, N.J. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300'000-year chronostratigraphy. Quaternary Research 27, (1987). 129.Google Scholar
Mellars, P. Neanderthals and the modern human colonization of Europe. Nature 432, (2004). 461465.CrossRefGoogle ScholarPubMed
O'Leary, M.H. Carbon isotopes in photosynthesis. BioScience 38, (1988). 328336.CrossRefGoogle Scholar
Oppliger, J., and Becker, D. Morphometrical analyses of northern Birch Mice (Sicista betulina Pallas, 1779; Mammalia; Rodentia) discovered in a rich locality from the Late Pleistocene of Northwestern Switzerland. Comptes Rendus Palevol 9, (2010). 113120.Google Scholar
Passey, B.J., Robinson, T.F., Ayliffe, L.K., Cerling, T.E., Sponheimer, M., Dearing, M.D., Roeder, B.L., and Ehleringer, J.R. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32, (2005). 14591470.Google Scholar
Pellegrini, M., Lee-Thorp, J.A., and Donahue, R.E. Exploring the variation of the δ18Op and δ18Oc relationship in enamel increments. Palaeogeography, Palaeoclimatology, Palaeoecology 310, (2011). 7183.Google Scholar
Pillans, B., and Gibbard, P. The Quaternary period. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M. The Geologic Time Scale 2012. (2012). Elsevier Publishing Company, 9791010.Google Scholar
Pryor, A.J.E., O'Connell, T.C., Wojtal, P., Krzeminska, A., and Stevens, R.E. Investigating climate at the Upper Palaeolithic site of Kraków Spadzista Street (B), Poland, using oxygen isotopes. Quaternary International 294, (2013). 108119.Google Scholar
Rothen, J., Becker, D., and Berger, J.-P. Morphométrie des dents jugales du mammouth laineux (Mammuthus primigenius) découvertes dans les remplissages pléistocènes de dolines d'Ajoie (Jura, Suisse). Actes de la Société jurassienne d'émulation 2012, (2011). 1736.Google Scholar
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R. Isotopic patterns in modern global precipitation. Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S. Climate Change in Continental Isotopic Records. Geophysical Monograph 78, (1993). 136.Google Scholar
Savoy, J., Scherler, L., and Becker, D. Variabilité morphologique et biométrique des dents d'Equus germanicus des dolines pléistocènes d'Ajoie (Jura, Suisse). Actes de la Société jurassienne d'émulation 2012, (2012). 1736.Google Scholar
Sharp, W.B., and Cerling, T.E. Fossil isotope records of seasonal climate and ecology: straight from the horse's mouth. Geology 26, (1998). 219222.Google Scholar
Skrzypek, G., Wisniewski, A., and Grierson, P.F. How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation?. Quaternary Science Reviews 30, (2011). 481487.Google Scholar
Svensson, A., Andersoon, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Steffensen, J.P., and Vinther, B.M. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, (2006). 32583267.Google Scholar
Tütken, T., and Vennemann, T.W. Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. Paläontologische Zeitschrift 83, (2009). 207226.Google Scholar
Tütken, T., Vennemann, T.W., Janz, H., and Heizmann, E.P.J. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241, (2006). 457491.CrossRefGoogle Scholar
Tütken, T., Furrer, H., and Vennemann, T.W. Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: implications for the Late Pleistocene climate, environment, and diet. Quaternary International 164–165, (2007). 139150.Google Scholar
Van Andel, T.H., and Davies, W. Neanderthals and Modern Humans in the European Landscape during the Last Glaciation. (2003). McDonald Institute monographs, Cambridge.Google Scholar
Van der Merwe, N.J., and Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18, (1991). 249259.CrossRefGoogle Scholar
Van Geel, B., Aptroot, A., Baittinger, C., Birks, H.H., Bull, I.D., Cross, H.B., Evershed, R.P., Gravendeel, B., Kompanje, E.J.O., Kuperus, P., Mol, D., Nierop, K.G.J., Pals, J.P., Tikhonov, A.N., Van Reenen, G., and Van Tienderen, P.H. The ecological implications of a Yakutian mammoth's last meal. Quaternary Research 69, (2008). 361376.Google Scholar
Van Geel, B., Guthrie, R.D., Altmann, J.G., Broekens, P., Bull, I.D., Gill, F.L., Jansen, B., Nieman, A.M., and Gravendeel, B. Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. Quaternary Science Reviews 30, (2010). 22892303.Google Scholar
Van Meerbeeck, C.J., Renssen, H., and Roche, D.M. How did marine isotope stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Climate of the Past 3, (2009). 3351.Google Scholar
Van Vliet-Lanoë, B., and Guillocheau, F. Évolution de l'enregistrement pédosédimentaire depuis 150 ka en France du NO et en Belgique: biorhexistasie et bilans sédimentaires. Comptes Rendus de l'Académie des Sciences 320, (1995). 419426.Google Scholar
Vereschagin, N.K., and Baryshnikov, G.F. Paleoecology of the mammoth fauna in the Eurasian Arctic. Hopkins, D.M., Matthews, J.V. Jr., Schweger, C.E., and Young, S.B. Paleoecology of Beringia. (1982). Academic Press, New York. 267279.Google Scholar
von Koenigswald, W. Climatic changes, faunal diversity, and environment of the Neanderthals in Central and Western Europe during the middle and upper Pleistocene. Terra Nostra 2006, 2 (2006). 3540.Google Scholar
Woillard, G. Grande Pile peat bog: a continuous pollen record for the last 140 000 yrs. Quaternary Research 9, (1978). 121.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.Google Scholar