Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T13:44:10.283Z Has data issue: false hasContentIssue false

Vegetation history along the eastern, desert escarpment of the Sierra San Pedro Mártir, Baja California, Mexico

Published online by Cambridge University Press:  20 January 2017

Camille A. Holmgren*
Affiliation:
Geography and Planning Department, Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
Julio L. Betancourt
Affiliation:
U.S. Geological Survey, Branch of Regional Research, Water Discipline, 1955 E. 6th St. Tucson, AZ 85719, USA
Kate A. Rylander
Affiliation:
U.S. Geological Survey, Branch of Regional Research, Water Discipline, 1955 E. 6th St. Tucson, AZ 85719, USA
*
Corresponding author. Fax: +1 716 878 4009.

Abstract

Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D.K., and Comrie, A.C. The North American monsoon. Bulletin of the American Meteorological Society 78, (1997). 21972213.Google Scholar
Bailey, D.K. A study of Pinus subsection Cembroides I: the single-needle pinyons of the Californias and the Great Basin. Notes from the Royal Botanic Garden Edinburgh 44, (1987). 274310.Google Scholar
Baldwin, B.G., Boyd, S., Ertter, B.J., Patterson, R.W., Rosatti, T.J., and Wilken, D.H. The Jepson Desert Manual: Vascular Plants of Southeastern California. (2002). University of California Press, Berkeley, CA.Google Scholar
Barron, J.A., Bukry, D., and Dean, W.E. Paleoceanographic history of the Guaymas Basin, Gulf of California, during the past 15, 000 years based on diatoms, silicoflagellates, and biogenic sediments. Marine Micropaleontology 56, 3–4 (2005). 81102.CrossRefGoogle Scholar
Behl, R.J., and Kennett, J.P. Oceanographic and ecologic manifestations of brief interstadials (Dansgaard-Oeschger Events) in Santa Barbara Basin, NE Pacific. Nature 379, (1996). 243246.CrossRefGoogle Scholar
Betancourt, J.L. Late Quaternary biogeography of the Colorado Plateau. Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat Middens: The Last 40, 000 Years of Biotic Change. (1990). University of Arizona Press, Tucson, AZ. 259292.Google Scholar
Burnett, A.W. Regional-scale troughing over the southwestern United States: temporal climatology, teleconnections, and climate impact. Physical Geography 15, (1994). 8098.CrossRefGoogle Scholar
Byrne, R. Preliminary pollen analysis of Deep Sea Drilling Project leg 64, hole 480, cores 1–11. Curray, J.R., and Moore, D.G. “Initial Reports of the Deep Sea Drilling Project”, Vol. LXIV, Part 2. United States Government Printing Office, Washington, DC. (1982). 12251237.Google Scholar
Byrne, R., Mudie, P., and Soutar, A. A pollen/dinoflagellate chronology for DSDP Site 480, Gulf of California. Betancourt, J.L., and MacKay, A.M. Proceedings of the Sixth Annual Pacific Climate (PACLIM) Workshop. (1990). 105110.Google Scholar
Cannariato, K.G., and Kennett, J.P. Climatically related millennial-scale fluctuations in California margin oxygen minimum zone strength during the past 60 k.y. Geology 27, (1999). 97978.2.3.CO;2>CrossRefGoogle Scholar
Carleton, A.M. Summer circulation climate of the American Southwest: 1945–1984. Annals of the Association of American Geographers 77, (1987). 619634.CrossRefGoogle Scholar
Cavazos, T., and Hastenrath, S. Convection and rainfall over Mexico and their modulation by the Southern Oscillation. International Journal of Climatology 10, (1990). 377386.CrossRefGoogle Scholar
Cole, K., Fisher, J., Arundel, S.T., Cannella, J., and Swift, S. Geographic and climatic limits of needle types of one- and two-needled pinyon pines. Journal of Biogeography 35, (2008). 257269.CrossRefGoogle ScholarPubMed
Comrie, A.C., and Glenn, E.C. Principal components-based regionalization of precipitation regimes across the Southwest United States and Northern Mexico, with an application to monsoon precipitation variability. Climate Research 10, (1998). 201215.CrossRefGoogle Scholar
Delgadillo Rodriguez, J. El bosque de coniferas de la Sierra San Pedro Mártir, Baja California. (2004). Instituto Nacional de Ecología, D.F., Mexico.Google Scholar
Farjon, A., and Styles, B.T. Pinus (Pinaceae). Flora Neotropica Monograph 75. (1997). The New York Botanical Garden, New York, NY.Google Scholar
Gastil, R.G., Phillips, R.P., and Allison, E.C. Reconnaissance Geologic Map of the State of Baja California. (1973). Geological Society of America, Boulder, CO.Google Scholar
Gastil, R.G., Phillips, R.P., and Allison, E.C. Reconnaissance Geology of the State of Baja California, Memoir 140. (1975). Geological Society of America, Boulder, CO. 170 pp Google Scholar
González-Abraham, C.E., Garcillán, P.P., and Ezcurra, E. Ecoregions of Baja California: a new synthetic proposal. VI Simposio Internacional sobre Flora Silvestre en Zonas Áridas. La Paz, Baja California, Mexico. (2008). Google Scholar
Hastings, J.R., and Turner, R.M. Seasonal precipitation regimes in Baja California. Geografiska Annaler 47, (1965). 204223.CrossRefGoogle Scholar
Hickman, J.C. The Jepson Manual: Higher Plants of California. (1993). University of California Press, Berkeley, CA. 1424 pp Google Scholar
Holmgren, C.A., Betancourt, J.L., and Rylander, K.A. A 36, 000-yr vegetation history from the Peloncillo Mountains, southeastern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 240, (2006). 405422.CrossRefGoogle Scholar
Holmgren, C.A., Betancourt, J.L., and Rylander, K.A. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park. Journal of Quaternary Science 25, (2010). 222236.CrossRefGoogle Scholar
Keigwin, L.D., and Jones, G.A. Deglacial climatic oscillations in the Gulf of California. Journal of Oceanography 58, (1990). 421432.CrossRefGoogle Scholar
Kennett, J.P., and Ingram, B.L. A 20, 000-year record of ocean circulation and climate change from the Santa Barbara Basin. Nature 377, (1995). 510514.CrossRefGoogle Scholar
Lanner, R.M. A new pine from Baja California and the hybrid origin of Pinus quadrifolia . Southwestern Naturalist 19, (1974). 7595.CrossRefGoogle Scholar
Lanner, R.M., and Van Devender, T.R. The recent history of pines in the American southwest. Richardson, D.M. The Ecology and Biogeography of Pinus. (1998). Cambridge University Press, Cambridge, UK. 171182.Google Scholar
Loarie, S.R., Carter, B.E., Hayhoe, K., McMahon, S., Moe, R., Knight, C.A., and Ackerly, D.D. Climate change and the future of California's endemic flora. PLoS ONE 3, (2008). e2502 CrossRefGoogle ScholarPubMed
Lozano-García, M.S., Ortega-Guerrero, B., and Sosa-Nájera, S. Mid- to Late-Wisconsin pollen record of San Felipe Basin, Baja California. Quaternary Research 58, (2002). 8492.CrossRefGoogle Scholar
Markham, C.G. Baja California's climates. Weatherwise (1972). 64101. April CrossRefGoogle Scholar
Mitchell, D.L., Ivanova, D., Rabin, R., Brown, T.J., and Redmond, K. Gulf of California sea surface temperatures and the North American monsoon: mechanistic implications from observation. Journal of Climate 15, (2002). 22612281.2.0.CO;2>CrossRefGoogle Scholar
Nixon, K.C. The oak (Quercus) biodiversity of California and adjacent regions. USDA Forest Service General Technical Report PSW-GTR-184. (2002). 320.Google Scholar
Nixon, K.C., and Muller, C.H. New names in California oaks. Novon 4, (1994). 391393.CrossRefGoogle Scholar
Nixon, K.C., and Steele, K.P. A new species of Quercus from southern California. Madroño 28, (1981). 210219.Google Scholar
O'Connor, J.E., and Chase, C.G. Uplift of the Sierra San Pedro Mártir Baja California, Mexico. Tectonics 8, (1989). 833844.CrossRefGoogle Scholar
Ortega-Guerrero, B., Caballero-Miranda, M., Lozano-García, M.S., and De la O-Villanueva, M. Paleoenvironmental records of the last 70, 000 yr in San Felipe Basin, Sonora desert, Mexico. Geofisica Internacional 38, (1999). 153163.Google Scholar
Peñalba, M.C., and Van Devender, T.R. Pollen analysis of the late Wisconsin and Holocene packrat (Neotoma) middens from San Fernando and Cataviña, Baja California, Mexico. Second Annual Baja California Botanical Symposium, San Diego Natural History Museum, San Diego. (1997). Google Scholar
Peñalba, M.C., and Van Devender, T.R. Cambios de vegetación y clima en Baja California, México, durante los últimos 20, 000 años. Geología del Noroeste 2, (1998). 2123.Google Scholar
Perry, J.P. The Pines of Mexico and Central America. (1991). Timber Press, Portland, OR.Google Scholar
Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H., and Stockwell, D.R.B. Future projections for Mexican faunas under global climate change scenarios. Nature 416, (2002). 626629.CrossRefGoogle ScholarPubMed
Rhode, D. Early Holocene juniper woodland and chaparral taxa in the central Baja California peninsula, Mexico. Quaternary Research 57, (2002). 102108.CrossRefGoogle Scholar
Silver, L.T., and Chappell, B.W. The Peninsular Ranges batholiths: an insight into the evolution of the Cordilleran batholiths of southwestern North America. Transactions of the Royal Society of Edinburgh 79, (1988). 105121.CrossRefGoogle Scholar
Smith, W. The effects of eastern north Pacific tropical cyclones on the southwestern U.S. NOAA Technical Memorandum NWS WS-197. (1986). 229 pp.Google Scholar
Spaulding, W.G., Betancourt, J.L., Croft, L.K., and Cole, K.L. Packrat middens: their composition and methods of analysis. Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat Middens: The Last 40, 000 Years of Biotic Change. (1990). University of Arizona Press, Tucson, AZ. 5984.Google Scholar
Stensrud, D.J., Gall, R.L., and Nordquist, M.K. Surges over the Gulf of California during the Mexican monsoon. Monthly Weather Review 125, (1997). 417437.2.0.CO;2>CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Turner, R.M., and Brown, D.E. Sonoran desertscrub. Brown, D.E. Biotic Communities of the American Southwest—United States and Mexico. Desert Plants 4, (1982). 181221.Google Scholar
Van Devender, T.R. Late Quaternary vegetation and climate of the Sonoran Desert, United States and Mexico. Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat Middens: The Last 40, 000 Years of Biotic Change. (1990). University of Arizona Press, Tucson, AZ. 134165.Google Scholar
Van Devender, T.R., and Burgess, T.L. Late Pleistocene woodlands in the Bolson de Mapimi: a refugium for the Chihuahuan Desert biota?. Quaternary Research 24, (1985). 346353.CrossRefGoogle Scholar
Van Devender, T.R., Burgess, T.L., Piper, J.C., and Turner, R.M. Paleoclimatic implication of Holocene plant remains from the Sierra Bacha, Sonora, Mexico. Quaternary Research 41, (1994). 99108.CrossRefGoogle Scholar
Van Devender, T.R., Toolin, L.J., and Burgess, T.L. The ecology and paleoecology of grasses in selected Sonoran Desert plant communities. Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat Middens: The Last 40, 000 Years of Biotic Change. (1990). University of Arizona Press, Tucson, AZ. 326349.Google Scholar
Walker, T.R., and Thompson, R.W. Late Quaternary geology of the San Felipe area, Baja California, Mexico. Journal of Geology 76, (1968). 479485.CrossRefGoogle Scholar
Webb, R.H., and Betancourt, J.L. The spatial and temporal distribution of radiocarbon ages from packrat middens. Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat Middens: The Last 40, 000 Years of Biotic Change. (1990). University of Arizona Press, Tucson, AZ. 85102.Google Scholar
Webb, R.H., and Betancourt, J.L. Climatic variability and flood frequency of the Santa Cruz River, Pima County, Arizona. U.S. Geological Survey Water-Supply Paper 2379. (1992). Google Scholar
Wells, P.V. Post-glacial origin of the present Chihuahuan Desert less than 11,500 years ago. Wauer, R.H., and Riskind, D.H. Transactions of the Symposium on the Biological Resources of the Chihuahuan Desert Region United States and Mexico. U.S. Department of the Interior. National Park Service Transactions and Proceeding 3, (1977). 107113.Google Scholar
Wells, P.V. Systematics and distribution of pinyons in the late Quaternary. Everett, R.L. Proceedings, Pinyon-Juniper Conference. USDA Forest Service General Technical Report INT-215. Intermountain Research Station, U. S. Forest Service, Ogden, UT. (1986). 104108.Google Scholar
Woodhouse, C.A. Winter climate and atmospheric circulation patterns in the Sonoran Desert region. International Journal of Climatology 17, (1997). 859873.3.0.CO;2-S>CrossRefGoogle Scholar