Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T15:30:25.654Z Has data issue: false hasContentIssue false

Using remote sensing to quantify aeolian transport and estimate the age of the terminal dune field Dunas Pampa Blanca in southern Peru

Published online by Cambridge University Press:  20 January 2017

Abstract

Aeolian dunes are widely used to reconstruct paleoenvironmental conditions. However, terminal dune fields (ergs) in the coastal desert of southern Peru – where information regarding Quaternary paleoenvironmental conditions is very limited – have until now not been used for paleoenvironmental reconstructions and the time depth of their accumulation is unknown. Here, different estimates are derived to constrain the time depth recorded in the Dunas Pampa Blanca, a terminal dune field in coastal southern Peru. Dune field age is calculated using the volume of the Dunas Pampa Blanca and (i) recent aeolian transport rate in migrating transverse dunes feeding the Dunas Pampa Blanca (derived from digital processing of sequential Landsat and Quickbird images) and (ii) limitations posed by recent fluvial sediment supply to the source of aeolian transport. The resulting maximum age estimate of 70 ± 8 ka (from aeolian transport) compares with a minimum age estimate of 4–75 ka (from sediment supply). However, a minimum age estimate of 110–450 ka is deduced from the tectonic and topographic evolution of the region. This discrepancy contradicts the hypothesis of late Quaternary stability in the Peruvian coastal desert and indicates that recent conditions of aeolian sediment supply and transport are not representative for the late Quaternary.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N., and Brimhall, G.H. Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence for supergene mineralization at La Escondida. Bulletin of the Geological Society of America 100, 10 (1988). 16401656.2.3.CO;2>CrossRefGoogle Scholar
Arancibia, G., Matthews, S., and de Arce, C.P. K–Ar and 40Ar/39Ar ages from supergene minerals in northern Chile: prevalence of humid climate and tectonic uplift until the Upper Miocene in the Atacama Desert. 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts. (2005). 5052.Google Scholar
Barber, R.T., and Chavez, F.P. Biological consequences of El Niño. Science 222, (1983). 12031210.CrossRefGoogle ScholarPubMed
Besler, H. The Great Sand Sea (Egypt) during the Late Pleistocene and the Holocene. Zeitschrift für Geomorphologie 127, N.F. Suppl.-Bd (2002). 119.Google Scholar
Bourke, M.C., Balme, M., Beyer, R.A., Williams, K.K., and Zimbelman, J. A comparison of methods used to estimate the height of sand dunes on Mars. Geomorphology 81, (2006). 440452.CrossRefGoogle Scholar
Cane, M.A. Oceanographic events during El Niño. Science 222, (1983). 11891195.CrossRefGoogle ScholarPubMed
Caviedes, C. A climatic profile of the North Chilean Desert at latitude 20°S. Amiran, D.H.K., and Wilson, A.W. Coastal deserts, their natural and human environments. (1973). University of Arizona Press, Tuscon. 115121.Google Scholar
Caviedes, C.N. Geography and the lessons from El Niño. Professional Geographer 36, 4 (1984). 428436.CrossRefGoogle Scholar
Clarke, J.D.A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, (2006). 101114.CrossRefGoogle Scholar
de Abreu, M.L., and Bannon, P.R. Dynamics of the South American coastal desert. Journal of the Atmospheric Sciences 50, 17 (1993). 29522964.2.0.CO;2>CrossRefGoogle Scholar
DigitalGlobe, Inc., (2003). Quickbird image, catalogue ID 1010010001 B7C001. acquisition: March 03, (2003). accessible through Google Earth (earth.google.com).Google Scholar
Eitel, B., Hecht, S., Mächtle, B., Schukraft, G., Kadereit, A., Wagner, G.A., Kromer, B., Unkel, I., and Reindel, M. Geoarchaeological evidence from desert loess in the Nazca–Palpa region, southern Peru: palaeoenvironmental changes and their impact on pre-Columbian cultures. Archaeometry 47, 1 (2005). 137158.CrossRefGoogle Scholar
Evenstar, L., Hartley, A., Rice, C., Stuart, F., Mather, A., and Chong, G. Miocene–Pliocene climate change in the Peru–Chile Desert. 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts. (2005). 258260.Google Scholar
Finkel, H.J. The barchans of southern Peru. Journal of Geology 67, (1959). 614647.CrossRefGoogle Scholar
Forman, S.L., Oglesby, R., and Webb, R.S. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links. Glob. Planet. Change. 29, (2001). 129.CrossRefGoogle Scholar
Garleff, K., Schäbitz, F., Stingle, H., and Veit, H. Jungquartäre Landschaftsentwicklung und Klimageschichte beiderseits der ariden Diagonale Südamerikas. Bamberger Geographische Schriften 11, (1991). 359394.Google Scholar
Gay, P. Origen, distribución y movimiento de las arenas eólicas en al área de Yauca a Palpa. Boletín de la Sociedad Geológica del Perú 37, (1962). 3758.Google Scholar
Gay, S.P. Jr Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology 27, (1999). 279293.Google Scholar
Gay, S.P. Jr Blowing sand and surface winds in the Pisco to Chala area, southern Peru. Journal of Arid Environments 61, 1 (2005). 101117.CrossRefGoogle Scholar
GLCF (Global Land Cover Facility) Landsat MSS EarthSat-Orthorectified satellite image, scene p006r7019740430. Global Land Cover Facility, University of Maryland. http://glcf.umiacs.umd.edu (2004). [28.02.2004] Google Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., and Núñez, L. From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 247258.CrossRefGoogle Scholar
Hampel, A. The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth and Planetary Science Letters 203, (2002). 665679.CrossRefGoogle Scholar
Hesse, R. Do swarms of migrating barchan dunes record paleoenvironmental changes? — a case study spanning the middle to late Holocene in the Pampa de Jaguay, southern Peru. Geomorphology (2008). http://dx.doi.org/10.1016/j.geomorph.2008.08.006 Google Scholar
Hesse, R., and Baade, J. Palaeoenvironmental changes in the Nazca–Palpa region, southern Peru — alternative interpretations of geoarchaeological evidence: a comment on Eitel et al. (2005) in Archaeometry, Vol. 47(1). Archaeometry 49, 3 (2007). 595602.CrossRefGoogle Scholar
Houston, J., and Hartley, A.J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology 23, (2003). 14531464.CrossRefGoogle Scholar
Hsu, J.T. Quaternary uplift of the Peruvian coast related to the subduction of the Nazca Ridge: 13.5 to 15.6 degrees south latitude. Quaternary International 15/16, (1992). 8797.CrossRefGoogle Scholar
Junta de Usuarios Palpa Daily discharge data for the drainage basin of the Rio Grande de Nazca 1975–2007. (2007). unpublished data Google Scholar
Lancaster, N. Controls on aeolian activity: some new perspectives from the Kelso Dunes, Mojave Desert, California. Journal of Arid Environments 27, (1994). 113125.CrossRefGoogle Scholar
Lancaster, N. Dune morphology and dynamics. Abrahams, A.D., and Parsons, A.J. Geomorphology of desert environments. (1994). Chapman & Hall, London. 474505.Google Scholar
Lettau, K., and Lettau, H. Bulk transport of sand by the barchans of the Pampa de La Loya in southern Peru. Zeitschrift für Geomorphologie 13, (1969). 182195.Google Scholar
Lewis, A.J., Henderson, F.M., and Holcomb, D.W. Radar fundamentals: the geoscience perspective. Henderson, F.M., and Lewis, A.J. Manual of Remote Sensing., Vol. 2. Principles and applications of imaging radars. 3rd ed. (1998). Wiley, New York. 131180.Google Scholar
Macharé, J., Veliz, Y., Ortlieb, L., and Dumont, J.-F. A review of recent paleoclimatic studies in Peru. Quaternary of South America and Antarctic Peninsula 8, (1990). 157176.Google Scholar
Mahan, S.A., Miller, D.M., Manges, C.M., and Yount, J.C. Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert. Quaternary International 166, (2007). 6178.CrossRefGoogle Scholar
McFadden, L.D., McDonald, E.V., Wells, S.G., Anderson, K., Quade, J., and Forman, S.L. The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change. Geomorphology 24, 2–3 (1998). 101145.CrossRefGoogle Scholar
McGowen, H.A., Petherick, L.M., and Kamber, B.S. Aeolian sedimentation and climate variability during the late Quaternary in southeast Queensland, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, (2008). 171181.CrossRefGoogle Scholar
Messerli, B., Grosjean, M., Graf, K., Schotterer, U., Schreier, H., and Vuille, M. Die Veränderungen von Klima und Umwelt in der Region Atacama (Nordchile) seit der letzten Kaltzeit. Erdkunde 46, (1992). 257272.CrossRefGoogle Scholar
Messerli, B., Grosjean, M., Bonani, G., Bürgi, A., Geyh, M.A., Graf, K., Ramseyer, K., Romero, H., Schotterer, U., Schreier, H., and Vuille, M. Climate change and natural resource dynamics of the Atacama Altiplano during the last 18 000 years: a preliminary synthesis. Mt. Res. Dev. 13, 2 (1993). 117127.CrossRefGoogle Scholar
Moseley, M.E., Wagner, D., Richardson, J.B. III Space shuttle imagery of recent catastrophic change along the arid Andean coast. Johnson, L.L., and Stright, M. Paleoshorelines and prehistory: an investigation of method. (1992). CRC Press, Boca Raton. 215235.Google Scholar
NASA Landsat composite images. NASA Earth Science Applications Directorate. https://zulu.ssc.nasa.gov/mrsid/mrsid.pl(2005). [26 January 2005] Google Scholar
NASA SRTM version 2. ftp://e0srp01u.ecs.nasa.gov/srtm/version2(2006). [13 July 2006] Google Scholar
NASA ASTER-DEM, data set ID: ASTER_DEM20041019164300.hdf. Land Processes Distributed Active Archive Center. http://lpdaac.usgs.gov/support/list.php(2006). [24 January 2006] Google Scholar
National Geophysical Data Center Bathymetric surveys C2306, YAQ7306, 8503, FD774BMV and PIQR04WT. Marine trackline geophysics and hydrographic surveys databases. http://www.ngdc.noaa.gov/mgg/gdas/gd_sys.html(2004). [06 May 2004] Google Scholar
Noller, J.S., (1993). Late Cenozoic stratigraphy and soil geomorphology of the Peruvian Desert, 3° to 18°S: a long-term record of hyperaridity and El Niño. PhD thesis, University of Colorado, Boulder.Google Scholar
Norabuena, E., Leffler-Griffin, L., Mao, A., Dixon, T., Stein, S., Sacks, I.S., Ocola, L., and Ellis, M. Space geodetic observations of Nazca–South America convergence across the central Andes. Science 279, (1998). 358362.CrossRefGoogle ScholarPubMed
Oberlander, T.M. Global deserts: a geomorphic comparison. Abrahams, A.D., and Parsons, A.J. Geomorphology of desert environments. (1994). Chapman and Hall, London. 1336.Google Scholar
ONERN (Oficina Nacional De Evaluación De Recursos Naturales) Inventario, evaluación y uso racional de los recursos naturales de la costa: cuenca de Río Grande (Nazca), vol. I + II. ONERN: Lima. (1971). Google Scholar
Ortlieb, L., and Macharé, J. Geocronología y morfostratigrafía de terrazas del Pleistoceno superior: El caso de San Juan–Marcona, Peru. Boletín de la Sociedad Geológica del Perú 81, (1990). 87106.Google Scholar
Prohaska, F.J. New evidence on the climatic controls along the Peruvian coast. Amiran, D.H.K., and Wilson, A.W. Coastal deserts, their natural and human environments. (1973). University of Arizona Press, Tuscon. 91107.Google Scholar
Radies, D., Preusser, F., Matter, A., and Mange, M. Eustatic and climatic controls on the development of the Wahiba Sand Sea, Sultanate of Oman. Sedimentology 51, (2004). 13591385.CrossRefGoogle Scholar
Rech, J.A., Currie, B.S., Cowan, A., Michalski, G., (2006). Mid-Miocene nitrate paleosols from the Atacama Desert: implications for the antiquity of the Atacama Desert. 18th World Congress of Soil Science, July 9–15, 2006, Philadelphia, Pennsylvania, USA.Google Scholar
Sébrier, M., and Macharé, J. Observaciones acerca del Cuaternario de la costa del Perú central. Bulletin de l’Institut Français d’Études Andines 9, 1–2 (1980). 522.CrossRefGoogle Scholar
Singhvi, A.K., and Kar, A. The aeolian sedimentation record of the Thar Desert. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 113, 3 (2004). 371401.Google Scholar
Smith, W.H.F., and Sandwell, D.T. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, (1997). 19561962.CrossRefGoogle Scholar
Sun, P., (2006). Outlier detection in high dimensional, spatial and sequential data sets. PhD thesis, University of Sydney, .Google Scholar
Thomas, J.V. Late Pleistocene–Holocene history of aeolian accumulation in the Thar Desert. Zeitschrift für Geomorphologie 116, N.F. Suppl.-Bd (1999). 181194.Google Scholar
Unkel, I., (2006). AMS-14C-Analysen zur Rekonstruktion der Landschafts- und Kulturgeschichte in der Region Palpa (S-Peru). Dissertation, University Heidelberg, .Google Scholar
Wang, X., Dong, Z., Liu, L., and Qu, J. Sand sea activity and interactions with climatic parameters in the Taklimakan Sand Sea, China. Journal of Arid Environments 57, (2004). 8598.CrossRefGoogle Scholar
Wasson, R.J., Rajaguru, S.N., Misra, V.N., Agrawal, D.P., Dhir, R.P., Singhvy, A.K., and Kameswara Rao, K. Geomorphology, Late Quaternary stratigraphy and paleoclimatology of the Thar dunefield. Zeitschrift für Geomorphologie 45, N.F. Suppl.-Bd (1983). 117151.Google Scholar
Weischet, W. Zur Klimatologie der Nordchilenischen Wüste. Meteorologische Rundschau 19, 1 (1966). 17.Google Scholar
Weischet, W., (1996). Regionale Klimatololgie. Teil 1: Die Neue Welt. B.G. Teubner, : Stuttgart.Google Scholar
Wernstedt, J. Experimentelle Prozeβanalyse. (1989). Verlag Technik, Berlin.Google Scholar
Wolfe, S.A., Paulen, R.C., Smith, I.R., and Lamothe, M. Age and paleoenvironmental significance of Late Wisconsinan dune fields in the Mount Watt and Fontas River map areas, northern Alberta and British Columbia. Geological Society of Canada Current Research 2007-B4 (2007). (10 pp)Google Scholar
Zárate, M., and Blasi, A. Late Pleistocene–Holocene eolian deposits of the southern Buenos Aires province, Argentina: a preliminary model. Quaternary International 17, (1993). 1520.CrossRefGoogle Scholar