Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-nqqt6 Total loading time: 0.481 Render date: 2022-07-02T03:04:14.412Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia

Published online by Cambridge University Press:  20 December 2021

György Sipos*
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Slobodan B. Marković
Affiliation:
Chair of Physical Geography, Department of Geography, Tourism and Hotel Management, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
Milivoj B. Gavrilov
Affiliation:
Chair of Physical Geography, Department of Geography, Tourism and Hotel Management, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
Alexia Balla
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Dávid Filyó
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Tamás Bartyik
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Minucher Mészáros
Affiliation:
Chair of Physical Geography, Department of Geography, Tourism and Hotel Management, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
Orsolya Tóth
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Boudewijn van Leeuwen
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Tin Lukić
Affiliation:
Chair of Physical Geography, Department of Geography, Tourism and Hotel Management, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
Petru Urdea
Affiliation:
Department of Geography, West University of Timișoara, B-dul. Vasile. Parvan Nr. 4, 300223, Timișoara, Romania
Alexandru Onaca
Affiliation:
Department of Geography, West University of Timișoara, B-dul. Vasile. Parvan Nr. 4, 300223, Timișoara, Romania
Gábor Mezősi
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
Tímea Kiss
Affiliation:
Geomorphological and Geochronological Research Group, Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
*
*Corresponding author email address: <gysipos@geo.u-szeged.hu>

Abstract

The Deliblato Sands is among the largest uniform dune fields of Europe, with a very pronounced topography reflecting extensive past aeolian events. Although lacking numerical age data, previous researchers have hypothesized various periods of dune formation. Our research goals were to map the main morphological units of the Deliblato Sands, and to provide the first optically stimulated luminescence (OSL) ages for the major dune types. Mapping was carried out using digital elevation models, satellite images, and GPS profiles. Dune development was investigated using OSL. Several tests were performed concerning thermal treatment, signal characteristics, dose recovery, and dose distributions to assess the suitability of sediments for luminescence dating. Based on our results, two dune generations could be identified that differed in morphology and age. Older dune forms are primarily low sand-supply, hairpin-like parabolic dunes that developed from the last glacial maximum until the end of the early Holocene, then became stabilized. Younger, superimposed parabolic dunes record an intensive aeolian signal from the eighteenth and nineteenth centuries. The history of the Deliblato Sands fits with those from other European sand dune areas, and provides further details to understand paleoenvironmental changes in the region.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London.Google Scholar
Arnold, L.J., Bailey, R.M., Tucker, G.E., 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2, 162167.CrossRefGoogle Scholar
Bartyik, T., Magyar, G., Filyó, D., Tóth, O., Blanka-Végi, V., Kiss, T., Marković, S., et al. , 2021. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quaternary Geochronology 64, 101166. https://doi.org/10.1016/j.quageo.2021.101166.CrossRefGoogle Scholar
Bernat Rebollal, M., Pérez-González, A., 2008. Inland aeolian deposits of the Iberian Peninsula: Sand dunes and clay dunes of the Duero Basin and the Manchega Plain. Palaeoclimatic considerations. Geomorphology 102, 207220.CrossRefGoogle Scholar
Bertran, P., Sitzia, L., Banks, W.E., Bateman, M.D., Demars, P.Y., Hernandez, M., Lenoir, M., Mercier, N., Prodeo, F., 2013. The Landes de Gascogne (southwest France): periglacial desert and cultural frontier during the Palaeolithic. Journal of Archaeological Science 40, 22742285.CrossRefGoogle Scholar
Borsy, Z., 1991. Blown sand territories in Hungary. Zeitschrift für Geomorphologie Supplementary Issues 90, 114.Google Scholar
Borsy, Z., 1990. Evolution of the alluvial fans of the Alföld. In: Rachocki, A.H., Church, M. (Eds.), Alluvial Fans. A Field Approach. Wiley, Chichester. pp. 229245.Google Scholar
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253257.CrossRefGoogle Scholar
Brennan, B.J., 2003. Beta doses to spherical grains. Radiation Measurements 37, 299303.CrossRefGoogle Scholar
Bukurov, B., 1954. Geomorfološke prilike Banatskog Podunavlja [The geomorphological circumstances of the Banat Danube Basin]. Journal of the Geographical Institute “Jovan Cvijić” SASA 8, 5587. [in Serbian]Google Scholar
Bukurov, B., 1982. Sintetička razmatranja geomorfoloških problema na teritoriji Vojvodine [Synthetic approach of geomorphological issues in Vojvodina]. Vojvođanska Akademija Nauka i Umetnosti 5, 197. [in Serbian]Google Scholar
Bulur, E., 1996. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements 26, 701709.CrossRefGoogle Scholar
Buró, B., Sipos, Gy., Lóki, J., Andrási, B., Félegyházi, E., Négyesi, G., 2016. Assessing Late Pleistocene and Holocene phases of aeolian activity on the Nyírség alluvial fan, Hungary. Quaternary International 425, 183195.CrossRefGoogle Scholar
Cholnoky, J., 1902. A futóhomok mozgásának törvényei. Földtani Közlöny 32, 638. [in Hungarian]Google Scholar
Cholnoky, J., 1910. Az Alföld felszine. Földrajzi Közlemények 38, 413437. [in Hungarian]Google Scholar
Cholnoky, J., 1940. A futóhomok elterjedése. Földtani Közlöny 70, 258294. [in Hungarian]Google Scholar
Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., et al. , 2006. The Community Climate System Model Version 3 (CCSM3), Journal of Climate 19, 21222143.CrossRefGoogle Scholar
Dietze, M., Kreutzer, S., Burow, C., Fuchs, M.C., Fischer, M., Schmidt, C., 2016, The abanico plot: visualising chronometric data with individual standard errors. Quaternary Geochronology 31, 1218.CrossRefGoogle Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Fábián, S.Á., Kovács, J., Varga, G., Sipos, G., Horváth, Z., Thamó-Bozsó, E., Tóth, G., 2014. Relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722732.CrossRefGoogle Scholar
Feurdean, A., Klotz, S., Brewer, S., Mosbrugger, V., Tămaş, T., Wohlfarth, B., 2008. Lateglacial climate development in NW Romania—comparative results from three quantitative pollen-based methods. Palaeogeography Palaeoclimatology Palaeoecology 265, 121133.CrossRefGoogle Scholar
Feurdean, A., Perșoiu, A., Tanţău, I., Stevens, T., Magyari, E.K., Onac, B.P., Marković, S., et al. , 2014. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106, 206224.CrossRefGoogle Scholar
Fordham, D.A., Saltré, F., Haythorne, S., Wigley, T.M.L., Otto-Bliesner, B.L., Chan, K.C., Brook, B.W., 2017. PaleoView: a tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography 40, 13481358.CrossRefGoogle Scholar
Gábris, Gy., 2003. A földtörténet utolsó 30 ezer évének szakaszai és a futóhomok mozgásának főbb periódusai Magyarországon (The periods of the history of the Earth for the last 30 thousand years and the most important periods of movement of aeolian sand). Földrajzi Közlemények 127, 113. [in Hungarian with English abstract]Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Gavrilov, M.B., Marković, S.B., Schaetzl, R.J., Tošić, I., Zeeden, C., Obreht, I., Sipos, Gy., et al. , 2018. Prevailing surface winds in Northern Serbia in the recent and past time periods; modern- and past dust deposition. Aeolian Research 31, 117129.CrossRefGoogle Scholar
Györgyövics, K., Kiss, T., 2016. Landscape metrics applied in geomorphology: hierarchy and morphometric classes of sand dunes in Inner Somogy, Hungary. Hungarian Geographical Bulletin 65, 271282.CrossRefGoogle Scholar
Hesse, P.P., 2016. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quaternary International 410, 1129.CrossRefGoogle Scholar
Hilgers, A., 2007. The chronology of Late Glacial and Holocene dune development in the northern Central European lowland reconstructed by optically stimulated luminescence (OSL) dating. PhD dissertation, Universität zu Köln, Germany.Google Scholar
Hrnjak, I., Lukić, T., Gavrilov, M.B., Marković, S.B., Unkašević, M., Tosić, I., 2014. Aridity in Vojvodina, Serbia. Theoretical and Applied Climatology 115, 323332.CrossRefGoogle Scholar
Hugenholtz, C.H., Bender, D., Wolfe, S., 2010. Declining sand dune activity in the southern Canadian prairies: historical context, controls and ecosystem implications. Aeolian Research 2, 7182.CrossRefGoogle Scholar
Jain, M., Murray, A.S., Bøtter-Jensen, L., 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37, 441449.CrossRefGoogle Scholar
Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.P., Murray, A.S., 2016. The north-eastern aeolian ‘European Sand Belt’ as potential record of environmental changes: A case study from Eastern Latvia and Southern Estonia. Aeolian Research 22, 5972.CrossRefGoogle Scholar
Kasse, C.K., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography: Earth and Environment 26, 507532.CrossRefGoogle Scholar
Kiss, T., Sipos, Gy., Kovács, F., 2009. Human impact on fixed sand dunes revealed by morphometric analysis. Earth Surface Processes and Landforms 34, 700711.CrossRefGoogle Scholar
Kiss, T., Györgyövics, K., Sipos, Gy., 2012a. Homokformák morfológiai tulajdonságainak és korának vizsgálata Belső-Somogy területén (Morphometry and age of sand dunes in Inner Somogy, Hungary). Földrajzi Közlemények 136, 361375. [in Hungarian with English abstract]Google Scholar
Kiss, T., Sipos, Gy., Mauz, B., Mezősi, G., 2012b. Holocene aeolian sand mobilization, vegetation history and human impact on the stabilized sand dune area of the southern Nyírség, Hungary. Quaternary Research 78, 492501.CrossRefGoogle Scholar
Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30, 18.Google Scholar
Li, Y., Zhang, W., Aydin, A., Deng, X., 2018. Formation of calcareous nodules in loess—paleosol sequences: Reviews of existing models with a proposed new “per evapotranspiration model.” Journal of Asian Earth Sciences 154, 816.CrossRefGoogle Scholar
Liritzis, I., Stamoulis, K., Papachristodoulou, C., Ioannides, K., 2013. A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry 13, 115.Google Scholar
Lóki, J., 1981. Belső-Somogy futóhomok területeinek kialakulása és formái (The development and forms of the blown sand areas of Belső-Somogy). Acta Geographica ac Geologica et Meteorologica Debrecina 18–19, 81111. [in Hungarian]Google Scholar
Ludwig, P., Gavrilov, M.B., Radaković, M.G., Marković, S.B., 2021. Malaco temperature reconstructions and numerical simulation of environmental conditions in the southeastern Carpathian Basin during the Last Glacial Maximum. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3318.CrossRefGoogle Scholar
Magyari, E.K., Pál, I., Vincze, I., Veres, D., Jakab, G., Braun, M., Szalai, Z., Szabó, Z., Korponai, J., 2019. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quaternary Science Reviews 225, 105980. https://doi.org/10.1016/j.quascirev.2019.105980.CrossRefGoogle Scholar
Marković-Marjanovič, J., 1950. Prethodno saopštenje o Deliblatsoj peščari (Preliminary results concerning the Deliblatska Peščara). Zbornik radova Geološkog instituta SAN 1, 7590. [in Serbian]Google Scholar
Mátyus, L., 1870. Österreichische Monatsschrift für Forstwesen 19–20, p. 45. [in German]Google Scholar
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.CrossRefGoogle Scholar
Mauz, B., Bode, T., Mainz, E., Blanchard, H., Hilger, W., Dikau, R., Zöller, L., 2002. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20, 5361.Google Scholar
Menković, L., 2013. Eolian relief of southeast Banatian. Bulletin of Serbian Geographical Society 93, 112.CrossRefGoogle Scholar
Mezősi, G., 2017. The Physical Geography of Hungary. Springer International Publishing, Cham.CrossRefGoogle Scholar
Moska, P., Sokołowski, R.J., Jary, Z., Zieliński, P., Raczyk, J., Szymak, A., Krawczyk, M., et al. , 2021. Stratigraphy of the Late Glacial and Holocene aeolian series in different sedimentary zones related to the Last Glacial maximum in Poland. Quaternary International. https://doi.org/10.1016/j.quaint.2021.04.004.CrossRefGoogle Scholar
Muhs, D.R., Holliday, V.T., 1995. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers. Quaternary Research 43, 198208.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Novothny, Á., Frechen, M., Horváth, E., 2010. Luminescence dating of periods of sand movement from the Gödöllő Hills, Hungary. Geomorphology 122, 254263.CrossRefGoogle Scholar
Nyári, D., Kiss, T., Sipos, Gy, 2007. Investigation of Holocene blown-sand movement based on archaeological findings and OSL dating, Danube-Tisza Interfluve, Hungary. Journal of Maps 3, 4657.CrossRefGoogle Scholar
Perșoiu, A., Onac, B.P., Wynn, J.G., Blaauw, M., Ionita, M., Hansson, M., 2017. Holocene winter climate variability in Central and Eastern Europe. Scientific Reports 7, 1196.CrossRefGoogle ScholarPubMed
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchhardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Roth, J. 1916. Die Aufforstungen der Ungarischen Flugsandgebiete. Forftwiffenfchaftliches Centralblatt 38, 464487.CrossRefGoogle Scholar
Shakun, J.D., Carlson, A.E., 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.CrossRefGoogle Scholar
Singarayer, J.S., Bailey, R.M., 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37, 451458.CrossRefGoogle Scholar
Sipos, G., Marković, S., Tóth, O., Gavrilov, M., Balla, A., Kiss, T., Urdea, P., Mészáros, M., 2016. Assessing the morphological characteristics and formation time of the Deliblato Sands, Serbia. Geophysical Research Abstracts 18, EGU General Assembly 2016, 1722 April, Vienna.Google Scholar
Sümegi, P., Molnár, M., Jakab, G., Persaits, G., Majkut, P., Páll, D.G., Gulyás, S., Jull, A.T., Törőcsik, T., 2011. Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central Great Hungarian Plain (central Europe) during the last 25,000 years. Radiocarbon 53, 8597.CrossRefGoogle Scholar
Sümegi, P., Magyari, E., Daniel, P., Molnár, M., Törőcsik, T., 2013. Responses of terrestrial ecosystems to Dansgaard–Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quaternary International 293, 3450.CrossRefGoogle Scholar
Telfer, M.W., Hesse, P.P., 2013. Palaeoenvironmental reconstructions from linear dunefields: recent progress, current challenges and future directions. Quaternary Science Reviews 78, 121.CrossRefGoogle Scholar
Tolksdorf, J.F., Kaiser, K., 2012. Holocene aeolian dynamics in the European sand-belt as indicated by geochronological data. Boreas 41, 408421.CrossRefGoogle Scholar
Tóth, M., Magyari, E.K., Brooks, S.J., Braun, M., Buczkó, K., Bálint, M., Heiri, O., 2012. A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania). Quaternary Research 77, 122131.CrossRefGoogle Scholar
Tóth, O., Sipos, Gy., Kiss, T., Bartyik, T., 2017. Variation of OSL residual doses in terms of coarse and fine grain modern sediments along the Hungarian section of the Danube. Geochronometria 44, 319330.CrossRefGoogle Scholar
Ujházy, K., Gábris, Gy., Frechen, M., 2003. Ages of periods of sand movement in Hungary determined through luminescence measurements. Quaternary International 111, 91100.CrossRefGoogle Scholar
Unkašević, M., Tošić, I., Obradović, M., 2007. Spectral analysis of the “Koshava” wind. Theoretical and Applied Climatology 89, 239244.CrossRefGoogle Scholar
Vandenberghe, D.A.G., Derese, C., Kasse, C., Van den Haute, P., 2013. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96113.CrossRefGoogle Scholar
Wintle, A.G., and Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.CrossRefGoogle Scholar
Zeremski, M., 1972. Južnobanatska lesna zaravan-prilog regionalnoj geomorfologiji iz aspekta egzo i endodinamičkih procesa. The Southern Banat plateau (toward a regional geomorphology of Vojvidina—exo- and endodynamic processes). Zbornik za Prirodne Nauke 43, 580. [in Serbian]Google Scholar
Supplementary material: File

Sipos et al. supplementary material

Sipos et al. supplementary material

Download Sipos et al. supplementary material(File)
File 4 MB
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Late Pleistocene and Holocene aeolian activity in the Deliblato Sands, Serbia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *