Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.372 Render date: 2021-03-04T11:05:32.483Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A late Holocene paleoclimatic history of Lake Tanganyika, East Africa

Published online by Cambridge University Press:  20 January 2017

J. Curt Stager
Natural Sciences Division, Paul Smith's College, Paul Smiths, NY 12970 USA Climate Change Institute, University of Maine, Orono, Maine 04469 USA
Christine Cocquyt
National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium
Raymonde Bonnefille
CEREGE, CNRS-UMR 6635, Europôle Méditerranéen de l'Arbois - BP 80-F. 13 545 Aix-en-Provence, Cedex 04, France
Constanze Weyhenmeyer
Department of Earth Sciences, 204 Heroy Geology Laboratory, Syracuse University, Syracuse, NY 13244 USA
Nicole Bowerman
Western Washington University, Geology Department, Bellingham, WA 98225-9080 USA
E-mail address:


A nearshore core (LT03-05) from the north basin of Lake Tanganyika provides diatom, pollen, and sedimentary time series covering the last ca. 3800 yr at 15–36 yr resolution. A chronology supported by 21 AMS dates on terrestrial and lacustrine materials allows us to account for ancient carbon effects on 14C ages and to propose refinements of the region's climatic history. Conditions drier than those of today were followed after ca. 3.30 ka by an overall wetting trend. Several century-scale climate variations were superimposed upon that trend, with exceptionally rainy conditions occurring 1.70–1.40 ka, 1.15–0.90 ka, 0.70–0.55 ka, and 0.35–0.20 ka. Around 0.55–0.35 ka, during the Spörer sunspot minimum, drier conditions developed in the northern Tanganyika basin while more humid conditions were registered at Lakes Victoria and Naivasha. This indicates significant variability in the nature and distribution of near-equatorial rainfall anomalies during much of the Little Ice Age.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.


Alin, S., and Cohen, A.S. Lake-level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracode-inferred water-depth reconstruction. Paleogeography, Palaeoclimatology, Palaeoecology 3169, (2003). 119.Google Scholar
Alin, S., O’Reilly, C.M., Cohen, A.S., Dettman, D.L., Palacios-Fest, M.R., and McKee, B.A. Effects of land-use change on aquatic biodiversity: a view from the paleorecord at Lake Tanganyika, East Africa. Geology 30, (2002). 11431146.2.0.CO;2>CrossRefGoogle Scholar
Barker, P.A., Street-Perrott, F.A., Leng, M.J., Greenwood, P.B., Swain, D.L., Perrott, R.A., Telford, R.J., and Fivken, K.J. A 14,000 year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya. Science 292, (2001). 23072310.CrossRefGoogle ScholarPubMed
Battarbee, R.W., Carvalo, L., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., and Juggins, S. Diatoms. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators. Developments in Paleolimnological Research (2001). Springer, New York. 155202.Google Scholar
Battarbee, R.W., and Kneen, M.J. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, (1982). 184188.CrossRefGoogle Scholar
Bonnefille, R., and Chalié, F. Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global and Planetary Change 26, (2000). 2550.CrossRefGoogle Scholar
Chalié, F. Paléoclimats du bassin Tanganyika Sud au cours des 25 derniers mille ans: reconstitution quantitative par le traitment statistique de données polliniques. C.R. Académie des Sciences, Paris 320, (1995). 205210.Google Scholar
Cocquyt, C. Diatoms from the northern basin of Lake Tanganyika. Bibliotheca Diatomologica, Band 39. (1998). J. Cramer, Berlin, Stuttgart. 274 pp Google Scholar
Cocquyt, C. Seasonal dynamics of diatoms in the littoral zone of Lake Tanganyika, Northern Basin. Archiv fur Hydrobiologie: Algological Studies 92, (1999). 7385.Google Scholar
Cohen, A.S., Lezzar, K.E., Cole, J., Dettman, D., Ellis, G.S., Gonneea, M.E., Plisnier, P.-D., Langenberg, V, Blaauw, M., and Zilifi, D. Late Holocene linkages between decade-century scale climate variability and productivity at Lake Tanganyika, Africa. Journal of Paleolimnology 36, (2006). 189209.CrossRefGoogle Scholar
Cohen, A.S., Palacios-Fest, M.R., Msaky, E.S., Alin, S.R., McKee, B., O'Reilly, C.M., Dettman, D.L., Nkotagu, H., and Lezzar, K.E. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. Journal of Paleolimnology 34, (2005). 125145.CrossRefGoogle Scholar
Cohen, A.S., Talbot, M.R., Awramik, S.M., Dettman, D.L., and Abell, P. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. GSA Bulletin 109, (1997). 444460.2.3.CO;2>CrossRefGoogle Scholar
Cohen, A.S., and Thouin, C. Nearshore carbonate deposits in Lake Tanganyika. Geology 15, (1987). 414418.2.0.CO;2>CrossRefGoogle Scholar
Coulter, G.W. Lake Tanganyika and its Life. (1991). Oxford U. Press, Google Scholar
Craig, H., Dixon, F., Craig, V., Edmond, J., and Coulter, G. Lake Tanganyika geochemical and hydrographic study: 1973 expedition. Scripps Institution of Oceanography, Publication vol. 75, (1974). 83 pp. Google Scholar
Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition: comparison with other methods. Journal of Sedimentary Petrology 44, (1974). 242248.Google Scholar
Degens, E.T., van Herzen, R.P., and Wong, H.K. Lake Tanganyika: water chemistry, sediments, geological structure. Naturwissenschaften 58, (1971). 229251.CrossRefGoogle Scholar
Eggermont, H., and Verschuren, D. Impact of soil erosion in disturbed tributary drainages on the benthic invertebrate fauna of Lake Tanganyika, East Africa. Biological Conservation 113, (2003). 99109.CrossRefGoogle Scholar
Felton, A.A., Russell, J.M., Cohen, A.S., Baker, M.E., Chesley, J., Lezzar, K.E., McGlue, M.M., Pigati, J.S., Quade, J., Stager, J.C., and Tiercelin, J.J. Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252, (2007). 405423.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, (2003). 17371739.CrossRefGoogle Scholar
Garcin, Y., Williamson, D., Bergonzini, L., Radakovitch, O., Vincens, A., Buchet, G., Guiot, J., and Majule, A. Solar and anthropogenic imprints on the hydrology of Lake Masoko (southern Tanzania) during the last 500 years. Journal of Paleolimnology 37, (2007). 475490.CrossRefGoogle Scholar
Gasse, F. Hydrological changes in Africa. Science 292, (2001). 22592260.CrossRefGoogle ScholarPubMed
Gasse, F. East African diatoms: taxonomy, ecological distribution. Bibliotheca Diatomologica, Band 11. (1986). J. Cramer, Stuttgart.Google Scholar
Gasse, F. Evolution of Lake Abhé (Ethiopia and TFAI), from 70,000 BP. Nature 265, (1977). 4245.CrossRefGoogle Scholar
Gasse, F., Juggins, S., and Ben Khelifa, L. Diatom-based transfer functions for inferring past hydrochemical characteristics of African Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117, (1995). 3154.CrossRefGoogle Scholar
Gasse, F., Lédée, V., Massault, M., and Fontes, J.-C. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, (1989). 5759.CrossRefGoogle Scholar
Haberyan, K.A. Fossil diatoms and the paleolimnology of Lake Rukwa, Tanzania. Freshwater Biology 17, (1987). 429436.CrossRefGoogle Scholar
Haberyan, K.A., and Hecky, R.E. The late Pleistocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeography, Palaeoclimatology, Palaeoecology 61, (1987). 169197.CrossRefGoogle Scholar
Hecky, R.E., and Degens, E.T., (1973). Late Pleistocene-Holocene chemical stratigraphy and paleolimnology of the rift valley lakes of central Africa. Woods Hole Oceanographic Institute Technical Report WHOI-73–28, 93 pp.Google Scholar
Hillaire-Marcel, C., Aucour, A.-M., Bonnefille, R., Riollet, G., Vincens, A., and Williamson, D. Palynological evidences of differential residence times of organic carbon prior to its sedimentation in East African Rift lakes and peatbogs. Quaternary Science Review 8, (1989). 207212.CrossRefGoogle Scholar
Jolly, D., and Bonnefille, R. Histoire et dynamique du marécage tropical de Ndurumu (Burundi), données polliniques. Review of Palaeobotany and Palynology 75, (1992). 133151.CrossRefGoogle Scholar
Jones, V.J., and Juggins, S. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biology 34, (1995). 433445.CrossRefGoogle Scholar
Juggins, S., (2001). The European Diatom Database User Guide: Version 1.0. University of Newcastle, Newcastle upon Tyne., 72 pp.Google Scholar
Kendall, R.L. An ecological history of the Lake Victoria basin. Ecological Monographs 39, (1969). 121176.CrossRefGoogle Scholar
Linthicum, K.J., Anyamba, A., Tucker, C.J., Kelley, P.W., Myers, M.F., and Peters, C.J. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, (1999). 397400.CrossRefGoogle ScholarPubMed
Livingstone, D.A. Sedimentation and the history of water level change in Lake Tanganyika. Limnology and Oceanography 10, (1965). 607610.CrossRefGoogle Scholar
Maley, J. Middle to late Holocene changes in tropical Africa and other continents: paleomonsoon and sea surface temperature variations. Dalfes, H.N., Kukla, G., and Weiss, H. Third Millenium BC Climate Change and Old World collapse, NATO ASI Series Vol. I 49. (1997). Springer-Verlag, Heidelberg. 611640.Google Scholar
Maley, J., and Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years BP. Review of Palaeobotany and Palynology 99, (1998). 157187.CrossRefGoogle Scholar
Mayewski, P.A. et al. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
Mondeguer, A., Tiercelin, J.J., Hoffert, M., Larqué, P., LeFournier, J., and Tucholka, P. Sédimentation actuelle et récente dans un petit bassin en contexte extensif et décrochant: la Baie de Burton, fossé Nord-Tanganyika, Rift East-Africain. Bulletin des Centres des Recherches Exploration-Production, ELF-Aquitaine 10, (1986). 229247.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millenial timescales during the Holocene epoch. Nature 420, (2002). 162165.CrossRefGoogle Scholar
Naithani, J., Deleersnijder, E., and Plisnier, P.-D. Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environmental Fluid Mechanics 3, (2003). 2339.CrossRefGoogle Scholar
Ngos, S. III, Sirocko, F., Giresse, P., Servant, M., and Lehné, R. The evolution of the Holocene palaeoenvironment of the Adamawa region of Cameroon: evidence from sediments from two crater lakes near Ngaoundere. Palaeoecology of Africa and the Surrounding Islands Vol. 28, (2008). Frankfurt, 103119.Google Scholar
Nguetsop, V.F., Servant-Vildary, S., and Servant, M. Late Holocene climatic changes in west Africa, a high resolution diatom record from equatorial Cameroon. Quaternary Science Reviews 23, (2004). 591609.CrossRefGoogle Scholar
O’Reilly, C.M., Alin, S.R., Plisnier, P.-D., Cohen, A.S., and McKee, B.A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424, (2003). 766768.CrossRefGoogle ScholarPubMed
Owen, R.B., Crossley, R., Johnson, T.C., Tweddle, D., Kornfield, I., Davidson, S., Eccles, D.H., and Engstrom, D.E. Major low levels of Lake Malawi and implications for speciation rates in cichlid fishes. Proceedings of the Royal Society, London B 240, (1990). 519553.CrossRefGoogle Scholar
Plisnier, P.D., Serneels, S., and Lambin, E.F. Impact of ENSO on East African ecosystems: a multivariate analysis based on climate and remote sensing data. Global Ecology and Biogeography 9, (2000). 481497.CrossRefGoogle Scholar
Reynaud-Farrera, I., Maley, J., and Wirrmann, D. Végétation et climat dans les forêts du Sud-Ouest Cameroun depuis 4770 ans BP: analyse pollinique des sédiments du Lac Ossa. C.R. Académie des Sciences de Paris 322, (1996). 749755.Google Scholar
Richardson, J.L., and Richardson, A.E. History of an African lake and its climatic implications. Ecological Monographs 42, (1972). 499534.CrossRefGoogle Scholar
Rietti-Shati, M., Shemesh, A., and Karlén, W. A 3000-year climatic record from biogenic silica oxygen isotopes in an equatorial high-altitude lake. Science 281, (1998). 980982.CrossRefGoogle Scholar
Russell, J.M., and Johnson, T.C. Little Ice Age drought in equatorial Africa: Intertropical Convergence Zone migrations and El Nino-Southern Oscillation variability. Geology 35, (2007). 2124.CrossRefGoogle Scholar
Russell, J.M., Verschuren, D., and Eggermont, H. Spatial complexity of “Little Ice Age” climate in East Africa: sedimentary records from two crater lake basins in western Uganda. The Holocene 17, (2007). 183193.CrossRefGoogle Scholar
Russell, J.M., and Johnson, T.C. A high-resolution geochemical record from lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quaternary Science Reviews 24, (2004). 13751389.CrossRefGoogle Scholar
Ryves, D.B., Battarbee, R.W., Juggins, S., Fritz, S.C., and Anderson, N.J. Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnology and Oceanography 51, (2006). 13551368.CrossRefGoogle Scholar
Scholz, C.A., King, J.W., Ellis, G.S., Swart, P.K., Stager, J.C., and Colman, S.M. Paleolimnology of Lake Tanganyika, East Africa, over the past 100 kyr. Journal of Paleolimnology 30, (2003). 139150.CrossRefGoogle Scholar
Scott, L., and Nyakale, M. Pollen indications of Holocene palaeoenvironments at Florisbad spring in the central Free State, South Africa. The Holocene 12, (2002). 497503.CrossRefGoogle Scholar
Ssemmanda, I., Ryves, D.B., Bennike, O., and Appleby, P.G. Vegetation history in western Uganda during the last 1200 years: a sediment-based reconstruction from two crater lakes. The Holocene 15, (2005). 119132.CrossRefGoogle Scholar
Ssemmanda, I., and Vincens, A. Vegetation changes and their climatic implications for the Lake Victoria region during the late Holocene. Odada, E.O., and Olago, D.O. The East African Great Lakes: Limnology, Palaeoclimatology and Biodiversity. (2002). Kluwer Academic Publishers, Dordrecht. 509523.Google Scholar
Stager, J.C. Environmental changes at Lake Cheshi, Zambia since 40,000 years BP. Quat. Res. 29, (1988). 5465.CrossRefGoogle Scholar
Stager, J.C., and Anfang, R. Preliminary evidence of environmental changes at Lake Bambili (Cameroon, West Africa) since 24,000 BP. Journal of Paleolimnology 22, (1999). 319330.CrossRefGoogle Scholar
Stager, J.C., Cumming, B.F., and Meeker, L.D. A 10,000 year high-resolution diatom record from Pilkington Bay, Lake Victoria, East Africa. Quaternary Research 59, (2003). 172181.CrossRefGoogle Scholar
Stager, J.C., Ryves, D., Cumming, B.F., Meeker, L.D., and Beer, J. Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. Journal of Paleolimnology 33, (2005). 243251.CrossRefGoogle Scholar
Stager, J.C., Ruzmaikin, A., Conway, D., Verburg, P., and Mason, P.J. Solar variability, ENSO, and the levels of Lake Victoria, East Africa. Journal of Geophysical Research 112, (2007). D15106 Scholar
Staubwasser, M., and Weiss, H. Holocene climate and cultural evolution in late prehistoric-early historic West Asia. Quaternary Research 66, (2006). 372387.CrossRefGoogle Scholar
Street-Perrott, F.A., and Perrott, R.A. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation. Nature 343, (1990). 607612.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14-C data base and revised CALIB 3.0 14-C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Talling, J.F. The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Internationale Revue der Gesamten Hydrobiologie 51, (1966). 545621.CrossRefGoogle Scholar
Taylor, D.M. Environmental change in montane southwest Uganda: a pollen record for the Holocene from Ahakagyezi Swamp. The Holocene 3, (1993). 324332.CrossRefGoogle Scholar
Tyson, P.D., Karlen, W., Holmgren, K., and Heiss, G.A. The Little Ice Age and medieval warming in South Africa. South African Journal of Science 96, (2000). 121126.Google Scholar
Verburg, P., Hecky, R.E., and Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, (2003). 505507.CrossRefGoogle ScholarPubMed
Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. Battarbee, R.W., Gasse, F., and Stickley, C.E. Past climate variability through Europe and Africa. (2003). Kluwer Academic Publishers, Dordrecht. Chapter 8 Google Scholar
Verschuren, D., Laird, K.R., and Cumming, B.F. Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature 403, (2000). 410413.CrossRefGoogle ScholarPubMed
Vincens, A., Williamson, D., Thevenon, F., Taieb, M., Buchet, G., Decobert, M., and Thouveny, N. Pollen-based vegetation changes in southern Tanzania during the last 4200 years: climate change and human impact. Palaeogeography, Palaeoclimatology, Palaeoecology 198, (2003). 321334.CrossRefGoogle Scholar
Vincens, A., Schwartz, D., Bertaux, J., Elenga, H., and de Namur, C. Late Holocene climatic changes in western equatorial Africa inferred from pollen in Lake Sinnda, southern Congo. Quaternary Research 50, (1998). 3445.CrossRefGoogle Scholar
Vincens, A., Chalié, F., and Bonnefille, R. Pollen-derived rainfall and temperature estimates from Lake Tanganyika and their implication for late Pleistocene water levels. Quaternary Research 40, (1993). 343350.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 58 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A late Holocene paleoclimatic history of Lake Tanganyika, East Africa
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A late Holocene paleoclimatic history of Lake Tanganyika, East Africa
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A late Holocene paleoclimatic history of Lake Tanganyika, East Africa
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *