Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-26T08:23:09.684Z Has data issue: false hasContentIssue false

Continental Oxygen Isotopic Record of the Last 170,000 Years in Jerusalem

Published online by Cambridge University Press:  20 January 2017

Amos Frumkin
Cave Research Center, Department of Geography, The Hebrew University of Jerusalem, Jerusalem, 91905, Israel
Derek C. Ford
School of Geology and Geography, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
Henry P. Schwarcz
School of Geology and Geography, McMaster University, Hamilton, Ontario, L8S 4K1, Canada


A long radiometrically dated oxygen isotopic record of continental climatic variations since the penultimate glaciation was obtained from a stalagmite deposited in a sealed cave in Jerusalem. This record shows that speleothems have the potential of assigning dates to long- and short-term climatic events, with possible refining of Milankovitch tuning of ice and marine records which themselves are not datable. Short-term (∼1000-yr) events are very significant in the region, reaching ∼50% of glacial/interglacial fluctuations. The Mediterranean Sea was the most probable source of local precipitation throughout the last glacial cycle.

Original Articles
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arkin, Y., Hamaoui, M., (1967). The Judea Group (Upper Cretaceous) in central and southern Israel. Geological Survey of Israel Bulletin 42, 117.Google Scholar
Assaf, G., (1977). Sea straits and glacial periods in the Red Sea. Science 195, 90.CrossRefGoogle ScholarPubMed
Avigour, A., Magaritz, M., Issar, A.S., (1992). Pleistocene paleoclimate of the arid region of Israel as recorded in calcite deposits along regional transverse faults and in veins. Quaternary Research 37, 304314.CrossRefGoogle Scholar
Ayalon, A., Bar-Matthews, M., Sass, E., (1998). Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid region, Israel: δ18 . Journal of Hydrology 207, 1831.CrossRefGoogle Scholar
Baker, A., Smart, P.L., Ford, D.C., (1993). Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 100, 291301.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., (1997). Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155168.Google Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., Halicz, L., (1996). Carbon and oxygen isotope study of the active water–carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica Acta 60, 337347.CrossRefGoogle Scholar
Begin, Z. B., Broecker, W., Buchbinder, B., Druckman, Y., Kaufman, A., Magaritz, M., Neev, D., (1985). Dead Sea and Lake Lisan Levels in the Last 30,000 Years: A Preliminary Report.Google Scholar
Bigg, G.R., (1995). Aridity of the Mediterranean Sea at the last glacial maximum: A reinterpretation of the δ18 . Paleoceanography 10, 283290.CrossRefGoogle Scholar
Bond, J., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, R., (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.Google Scholar
Bowman, D., Gross, T., (1993). The highest stand of Lake Lisan: ∼150 meters below MSL. Israel Journal of Earth Sciences 41, 233237.Google Scholar
Broecker, W.S., (1997). Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 . Science 278, 15821588.CrossRefGoogle ScholarPubMed
Crowley, T.J., Kim, K.-Y., (1994). Milankovitch forcing of the last interglacial sea level. Science 265, 15661568.CrossRefGoogle ScholarPubMed
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 438468.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörncdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Dayan, U., (1986). Climatology of back trajectories from Israel based on synoptic data. Journal of Climate and Applied Meteorology 25, 591595.2.0.CO;2>CrossRefGoogle Scholar
Emiliani, C., (1971). The last interglacial: Paleotemperatures and chronology. Science 171, 571573.CrossRefGoogle ScholarPubMed
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., (1953). Revised carbonate–water isotopic temperature scale. Geological Society of America Bulletin 64, 13151326.Google Scholar
Even, H., Carmi, I., Magaritz, M., Gerson, R., (1986). Timing the transport of water through the upper vadose zone in a karstic system above a cave in Israel. Earth Surface Processes and Landforms 11, 181191.Google Scholar
Fairbanks, R.G., (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Field, M.H., Huntley, B., Müller, H., (1994). Eemian climate fluctuations observed in a European pollen record. Nature 371, 779783.Google Scholar
Fontugne, M.R., Calvert, S.E., (1992). Late Pleistocene variability of the carbon isotopic composition of organic matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric CO2 . Paleoceanography 7, 120.CrossRefGoogle Scholar
Ford, D.C., Williams, P.W., (1989). Karst Geomorphology and Hydrology. Unwin Hyman, London.Google Scholar
Frumkin, A., Schwarcz, H.P., Ford, D.C., (1994). Evidence for Isotopic equilibrium in stalagmites from caves in a dry region: Jerusalem, Israel. Israel Journal of Earth Sciences 43, 221230.Google Scholar
Gascoyne, M., (1992). Paleoclimate determination from cave calcite deposits. Quaternary Science Reviews 11, 609632.Google Scholar
Gat, J.R., Dansgaard, W., (1972). Stable isotope survey of the fresh water occurrences in Israel and the northern Jordan Rift Valley. Journal of Hydrology 16, 177208.CrossRefGoogle Scholar
Gat, J.R., (1981). Paleo-climate conditions in the Levant as revealed by the isotopic composition of paleowaters. Israel Meteorological Research Papers 3, 1328.Google Scholar
Geyh, M.A., (1994). The paleohydrology of the eastern Mediterranean. Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean. p. 131145.Google Scholar
Goede, A., (1994). Continuous early last glacial palaeoenvironmental record from a Tasmanian speleothem based on stable isotope and minor element variations. Quaternary Science Reviews 13, 283291.CrossRefGoogle Scholar
Goodfriend, G.A., (1991). Holocene trends in18 . Quaternary Research 35, 417426.CrossRefGoogle Scholar
Goodfriend, G.A., Magaritz, M., (1988). Palaeosols and late Pleistocene rainfall fluctuations in the Negev Desert. Nature 332, 144146.Google Scholar
Grootes, P.M., (1993). Interpreting continental oxygen isotopes records. Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. Climate Change in Continental Isotopic Record American Geophysical Union, Washington.3746.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Guilderson, T.H., Fairbanks, R.G., Rubenstone, J.L., (1994). Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663665.CrossRefGoogle Scholar
Harmon, R.S., Schwarcz, H.P., (1981). Changes of2 18 . Nature 290, 125128.CrossRefGoogle Scholar
Hemleben, C., Meischner, D., Zahn, R., Almogi-Labin, A., Erlenkeuser, H., Hiller, B., (1996). Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: Influence of global sea level change on hydrography. Paleoceanography 11, 147156.Google Scholar
Hendy, C.H., (1971). The isotopic geochemistry of speleothems—The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.Google Scholar
Horowitz, A., (1979). The Quaternary of Israel. Academic Press, New York.Google Scholar
Horowitz, A., Gat, J.R., (1984). Floral and isotopic indications for possible summer rains in Israel during wetter climate. Pollen et Spores 26, 6168.Google Scholar
Hurrel, J.W., (1995). Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269, 676679.CrossRefGoogle Scholar
Jenkins, J.A., Williams, D.W., (1984). Nile water as a cause of eastern Mediterranean sapropel formation: Evidence for and against. Marine Micropaleontology 9, 521534.CrossRefGoogle Scholar
Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Bartov, N.I., Kotlyakov, V.M., Petrov, V.M., (1987). Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403408.CrossRefGoogle Scholar
Kaufman, A., Yechieli, Y., Gardosh, M., (1992). Reevaluation of the lake-sediment chronology in the Dead Sea basin, Israel, based on new230 . Quaternary Research 38, 292304.CrossRefGoogle Scholar
Kaufman, A., Wasserburg, G.J., Porcelli, D., Bar-Matthews, M., Ayalon, A., Halicz, L., (1998). U–Th isotope systematics from the Soreq Cave, Israel, and climatic correlations. Earth and Planetary Science Letters 156, 141155.Google Scholar
Kukla, G., McManus, J.F., Rousseau, D.D., Chuine, I., (1997). How long and how stable was the last interglacial. Quaternary Science Reviews 16, 605612.CrossRefGoogle Scholar
Lewy, Z., (1996). The approximate position of the Middle-Upper Cenomanian substage boundary in Israel. Israel Journal of Earth Sciences 45, 193199.Google Scholar
Li, W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., McNutt, R., Williams, D., (1989). High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature 339, 534536.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., (1987). Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 130.CrossRefGoogle Scholar
McManus, J., Bond, J., Broecker, W., Johnsen, S., Labeyrie, L., Higgins, S., (1994). High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.Google Scholar
Rindsberger, M., Jaffe, S., Rahamim, S., Gat, J.R., (1990). Patterns of the isotopic composition of precipitation in time and space: Data from Israeli storm water collection program. Tellus 42B, 263271.CrossRefGoogle Scholar
Rindsberger, M., Magaritz, M., Carmi, I., Gilad, D., (1983). The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area. Geophysical Research Letters 10, 4346.CrossRefGoogle Scholar
Schwarcz, H.P., (1986). Geochronology and isotopic geochemistry of speleothems. Fritz, P., Fontes, J.C. Handbook of Environmental Isotope Geochemistry Elsevier, Amsterdam.271300.Google Scholar
Schwarcz, H.P., (1989). Uranium series dating of Quaternary deposits. Quaternary International 1, 717.CrossRefGoogle Scholar
Thouveny, N., de-Beaulieu, J., Bonifay, E., Creer, K.M., Guiot, J., Geille, M., Williams, T., Williamson, D., (1994). Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371, 503506.CrossRefGoogle Scholar
Thunell, R.C., Williams, D.F., (1989). Glacial-Holocene salinity changes in the Medirerranean Sea: Hydrographic and depositional effects. Nature 338, 493496.Google Scholar
Tucholka, P., Fontugne, M., Guichard, F., Paterne, M., (1987). The Blake magnetic polarity episode in cores from the Mediterranean Sea. Earth and Planetary Science Letters 86, 320326.CrossRefGoogle Scholar
Vergnaud-Grazzini, C., Ryan, W.B.F., Cita, M.B., (1977). Stable isotope fractionation, climate change and episodic stagnation in the eastern Mediterranean during the Late Quaternary. Marine Micropaleontology 2, 353370.Google Scholar
Webb, R.S., Rind, D.H., Lehman, S.C., Healy, R.J., Sigman, D., (1997). Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385, 695699.CrossRefGoogle Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar, P.T., Revesz, K.M., (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255260.CrossRefGoogle ScholarPubMed
Yurtsever, M., Gat, J. R., (1981). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. 103, 142.Google Scholar