Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T03:02:12.511Z Has data issue: false hasContentIssue false

Climate archives from 90 to 250 ka in horizontal and vertical ice cores from the Allan Hills Blue Ice Area, Antarctica

Published online by Cambridge University Press:  20 January 2017

Nicole E. Spaulding*
Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME, USA
John A. Higgins
Department of Geosciences, Princeton University, Princeton, NJ, USA
Andrei V. Kurbatov
Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME, USA
Michael L. Bender
Department of Geosciences, Princeton University, Princeton, NJ, USA
Steven A. Arcone
US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
Seth Campbell
Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME, USA US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
Nelia W. Dunbar
Earth and Environmental Science Department New Mexico Tech, Socorro, NM, USA
Laura M. Chimiak
Department of Geosciences, Princeton University, Princeton, NJ, USA
Douglas S. Introne
Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME, USA
Paul A. Mayewski
Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME, USA
*Corresponding author. Fax: + 1 207 581 1203. E-mail (N.E. Spaulding).


Terrestrial meteorite ages indicate that some ice at the Allan Hills blue ice area (AH BIA) may be as old as 2.2 Ma. As such, ice from the AH BIA could potentially be used to extend the ice core record of paleoclimate beyond 800 ka. We collected samples from 5 to 10 cm depth along a 5 km transect through the main icefield and drilled a 225 m ice core (S27) at the midpoint of the transect to develop the climate archive of the AH BIA. Stable water isotope measurements (δD) of the surface chips and of ice core S27 yield comparable signals, indicating that the climate record has not been significantly altered in the surface ice. Measurements of 40Aratm and δ18Oatm taken from ice core S27 and eight additional shallow ice cores constrain the age of the ice to approximately 90–250 ka. Our findings provide a framework around which future investigations of potentially older ice in the AH BIA could be based.

Original Articles
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Arthern, R.J., Winebrenner, D.P., Vaughan, D.G., (2006). Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. Journal of Geophysical Research 111, D06107.CrossRefGoogle Scholar
Bazin, L., Landais, A., Lemieux-Dudon, B., Toye Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S.O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., Wolff, E., (2012). An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past Discussions 8, 59636009.Google Scholar
Bender, M., Sowers, T., Labeyrie, L., (1994). The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochemical Cycles 8, 363376.Google Scholar
Bender, M., Sowers, T., Lipenkov, V., (1995). On the concentrations of O2, N2, and Ar in trapped gases from ice cores. Journal of Geophysical Research: Atmospheres 100, D9 1865118660.Google Scholar
Bender, M.L., Barnett, B., Dreyfus, G.B., Jouzel, J.G., Porcelli, D., (2008). The contemporary degassing rate of 40Ar from the solid Earth. Proceedings of the National Academy of Sciences 105, 82328237.Google Scholar
Berger, A., (2002). Climate: an exceptionally long interglacial ahead?. Science 297, 12871288.Google Scholar
Bintanja, R., (1999). On the glaciological, meteorological and climatological significance of Antarctic blue ice areas. Reviews of Geophysics 37, 3 337359.Google Scholar
Bohaty, S.M., Scherer, R.P., Harwood, D.M., (1998). Quaternary diatom biostratigraphy and palaeoenvironments of the CRP-1 drillcore, Ross Sea, Antarctica. Terra Antarctica 5, 431453.Google Scholar
Brown, I.C., Scambos, T.A., (2004). Satellite monitoring of blue-ice extent near Byrd Glacier, Antarctica. Annals of Glaciology 39, 223230.Google Scholar
Cassidy, W.A., (1983). The remarkably low surface density of meteorites at Allan Hills and implications in this for climate change. Oliver, R.L., James, P.R., Jago, J.B. Antarctic Earth Science. Cambridge University Press, Cambridge.623625.Google Scholar
Cassidy, W.A., Olsen, E., Yanai, K., (1977). Antarctica: a deep-freeze storehouse for meteorites. Science 198, 727731.Google Scholar
Cassidy, W., Harvey, R.P., Schutt, J., Delisle, G., Yanai, K., (1992). The meteorite collection sites of Antarctica. Meteoritics 27, 490525.CrossRefGoogle Scholar
Coren, F., Delisle, G., Sterzai, P., (2003). Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry. Meteoritics and Planetary Science 38, 13191330.Google Scholar
Craig, H., (1961). Isotopic variation in meteoric waters. Science 133, 17021703.CrossRefGoogle ScholarPubMed
Custer, S., (2006). Eemian Records of 18O atm and CH 4 Correlated to the Vostok EGT4 Timescale from the Moulton Blue Ice Field, West Antarctica. Senior Thesis in GeosciencesPennsylvania State University, .Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Gundestrup, N., (1973). Stable isotope glaciology. Meddelelser om Grønland 197, 153.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveilbjornsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Delisle, G., (1993). Global change, Antarctic meteorite traps and the East Antarctic Ice Sheet. Journal of Glaciology 39, 397408.Google Scholar
Delisle, G., Sievers, J., (1991). Sub-ice topography and meteorite finds near the Allan Hills and the Near Western ice field, Victoria Land, Antarctica. Journal of Geophysical Research 96, 1557715587.Google Scholar
Dixon, D.A., Mayewski, P.A., Goodwin, I.D., Marshall, G.J., Freeman, R., Maasch, K.A., Sneed, S.B., (2011). An ice core proxy for northerly air mass incursions into West Antarctica. International Journal of Climatology 32, 14551465.Google Scholar
Dreyfus, G.B., Parrenin, F., Lemieux-Dudon, B., Durand, G., Masson-Delmotte, V., Jouzel, J., Barnola, J.M., Panno, L., Spahni, R., Tisserand, A., Siegenthaler, U., Leuenberger, M., (2007). Anomalous flow below 2700 m in the EPICA Dome C ice core detected using 18O of atmospheric oxygen measurements. Climate of the Past 3, 341353.Google Scholar
Dunbar, N.W., Kyle, P.R., McIntoch, W.C., Esser, R.P., (1995). Allan Hills, Antarctica: a new source of glacial tephrochronological data. Antarctic Journal of the United States 30, 5 7678.Google Scholar
Dunbar, N.W., McIntosh, W.C., Esser, R.P., (2008). Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica. Geological Society of America Bulletin 120, 796812.Google Scholar
E.P.I.C.A. Members, . (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.CrossRefGoogle Scholar
E.P.I.C.A. Members, . (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195198.CrossRefGoogle Scholar
Emerson, S., Quay, P.D., Stump, C., Wilbur, D., Schudlich, R., (1995). Chemical tracers of productivity and respiration in the subtropical Pacific Ocean. Journal of Geophysical Research 100, 1587315887.Google Scholar
Faure, G., Buchanan, D., (1987). Glaciology of the East Antarctic ice sheet at the Allan Hills: a preliminary interpretation. Antarctic Journal of the United States 22, 5 7475.Google Scholar
Faure, G., Grootes, P.M., Buchanan, D., Hagen, E.H., (1992). Oxygen isotope study of the ice fields surrounding the Reckling Moraine on the East Antarctic Ice Sheet. Contributions to Antarctic Research Series 57, 1526.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Fudali, R.F., (1982). Gravity measurements across the Allan Hills main meteorite collecting area. Antarctic Journal of the United States 17, 5 5860.Google Scholar
Fudali, R.F., (1989). Gravity measurements across and between the meteorite-bearing icefields west-southwest of the Allan Hills. Antarctic Journal of the United States 24, 5 4850.Google Scholar
Grootes, P.M., Steig, E.J., Stuiver, M., Waddington, E.D., Morse, D.L., Nadeau, M.J., (2001). The Taylor dome Antarctic δ18O record and globally synchronous changes in climate. Quaternary Research 56, 289298.Google Scholar
Harvey, R.P., (2003). The origin and significance of Antarctic meteorites. Chemie der Erde-Geochemistry 63, 93147.CrossRefGoogle Scholar
Harvey, R.P., Dunbar, N.W., McIntosh, W.C., Esser, R.P., Nishiizumi, K., Taylor, S., Caffee, M.W., (1998). Meteoritic event recorded in Antarctic ice. Geology 26, 607610.Google Scholar
Howard, W.R., (1997). Palaeoclimatology: a warm future in the past. Nature 388, 418419.Google Scholar
Jouzel, J., Alley, R.B., Cuffey, K.M., Dansgaard, W., Grootes, P., Hoffman, G., Johnsen, S.J., Koster, R.D., Peel, D., Shuman, C.A., (1997). Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, 2647126487.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffman, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W., (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.Google Scholar
Kawamura, K., Parrenin, F., Lisiecki, L.E., Uemura, R., Vimeux, F., Severinghaus, J.P., Hutterli, M.A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M.E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., Watanabe, O., (2007). Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912916.Google Scholar
King, J.C., Turner, J., (1997). Antarctic Climatology and Meteorology. Cambridge University Press, Cambridge, U.K..Google Scholar
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., Oppenheimer, M., (2009). Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863867.CrossRefGoogle ScholarPubMed
Korotkikh, E.V., Mayewski, P.A., Handley, M.J., Sneed, S.B., Introne, D.S., Kurbatov, A.V., Dunbar, N.W., McIntosh, W.C., (2011). The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quaternary Science Reviews 30, 19401947.Google Scholar
Lisiecki, L., Raymo, M.E., (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Machida, T., Nakazawa, T., Narita, H., Fujii, Y., Aoki, S., Watanabe, O., (1996). Variations and the CO 2, CH 4 and N 2 O concentrations and δ13C of CO 2 in the glacial period deduced from an Antarctic ice core, South Yamato. Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology 10, 5565.Google Scholar
Masson-Delmotte, V., Buiron, D., Ekaykin, A., Frezzotti, M., Gallee, H., Jouzel, J., Krinner, G., Landais, A., Motoyama, H., Oerter, H., Pol, K., Pollard, D., Ritz, C., Schlosser, E., Sime, L.C., Sodemann, H., Stenni, B., Uemura, R., Vimeux, F., (2011). A comparison of the present and last interglacial periods in six Antarctic ice cores. Climate of the Past 7, 397423.Google Scholar
Mayewski, P.A., Meeker, D., Whitlow, S., Twickler, M.S., Morrison, M.C., Bloomfiled, P., Bond, G.C., Alley, R.B., Gow, A.J., Meese, D.A., Grootes, P.M., Ram, M., Taylor, K.C., Wumkes, W., (1994). Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263, 17471751.Google Scholar
Mckay, R., Naish, T., Powell, R., Barrett, P., Scherer, R., Talarico, F., Kyle, P., Monien, D., Kuhn, G., Jackolski, C., Williams, T., (2012). Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment. Quaternary Science Reviews 34, 93112.Google Scholar
Moore, J.C., Nishio, F., Fujita, S., Narita, H., Pasteur, E., Grinsted, A., Sinisalo, A., Maeno, N., (2006). Interpreting ancient ice in a shallow ice core from the South Yamato (Antarctica) blue ice area using flow modeling and compositional matching to deep ice cores. Journal of Geophysical Research 111, D16302.Google Scholar
Nagata, T., (1978). A possible mechanism of concentration of meteorites within the meteorite ice field in Antarctica. Proceedings of the Second Symposium on Yamota Meteorites. Memoirs of National Institute of Polar Research 8, 7092.Google Scholar
Nakawo, M., Nagoshi, M., Mae, S., (1988). A stratigraphic record of an ice core from the Yamato meteorite ice field, Antarctica. Annals of Glaciology 10, 126129.Google Scholar
Nishiizumi, K., (2006). Terrestrial age survey of Antarctic meteorites. Antarctic Meteorite Newsletter 29, 34.Google Scholar
Nishiizumi, K., Welten, K., (2008). Terrestrial age survey of Antarctic meteorites. Antarctic Meteorite Newsletter 31, 78.Google Scholar
Nishiizumi, K., Elmore, D., Kubik, P., (1989). Update on terrestrial ages of Antarctic meteorites. Earth and Planetary Science Letters 93, 299313.Google Scholar
Parrenin, F., Barnola, J., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J.P., Sevensson, A., Udisti, R., Waelbroeck, C., Wolff, E.W., (2007). The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past 3, 485497.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M.L., Chappellaz, J., Davis, M., Delaygue, G., Masson-Delmotte, V., Kotlyakov, M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E.S., Stievenard, M., (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Pollard, D., Deconto, R.M., (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329332.Google Scholar
Popp, T., (2008). The Speed and Timing of Climate Change: Detailed Stable Isotope Records from NorthGRIP, Greenland and Mt. Moulton, West Antarctica. (PhD Dissertation)Department of Geological Sciences, University of Colorado Boulder, .Google Scholar
Popp, T.J., Sowers, T., Dunbar, N.W., McIntosh, W.C., White, J.W., (2004). Radioisotopically dated climate record spanning the last interglacial in ice from Mount Moulton, West Antarctica, Eos, Trans. AGU, Fall Meeting Abstract 84, 47 U31A0015.Google Scholar
Raymo, M.E., Mitrovica, J.X., (2012). Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, 453456.Google Scholar
Rempel, A.W., Wettlaufer, J.S., (2003). Isotopic diffusion in polycrystalline ice. Journal of Glaciology 49, 397406.CrossRefGoogle Scholar
Scarchilli, C., Frezzotti, M., Ruti, P.M., (2010). Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors. Climate Dynamics 37, 21072125.Google Scholar
Scherer, P., Schultz, L., Neupert, U., Knauer, M., Neumann, S., Leya, I., Michel, R., Mokos, J., Lipschutz, M., Metzler, K., Suter, M., Kubik, M., (1997). Allan Hills 88019: an Antarctic H-chondrite with a very long terrestrial age. Meteoritics and Planetary Science 32, 769773.Google Scholar
Schultz, L., Annexstad, J.O., Delisle, G., (1990). Ice movement and mass balance at the Allan Hills Icefield. Antarctic Journal of the United States 25, 9495.Google Scholar
Schwander, J., Stauffer, B., Sigg, S., (1988). Air mixing in firn and the age of the air at pore close-off. Annals of Glaciology 10, 141145.Google Scholar
Severinghaus, J.P., Wolff, E.W., Brook, E.J., (2010). Searching for the oldest ice. Eos, Transactions of the American Geophysical Union 91, 357358.Google Scholar
Shackelton, N.J., Opdyke, N.D., (1976). Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239, late Pliocene to latest Pleistocene. Cline, R.M., Hays, J.D. Investigation of Late Paleoceanography and Paleoclimatalogy. Geological Society of America Memoirs 145, 449464.Google Scholar
Sinclair, K.E., Bertler, N., Trompetter, W.J., (2010). Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. Journal of Geophysical Research 115, D22112.Google Scholar
Sinisalo, A., Grinsted, A., Moore, J.C., Meijer, H.A., Martma, T., van de Wal, R.S.W., (2007). Inferences from stable water isotopes on the Holocene evolution of Scharffenbergbotnen blue-ice area, East Antarctica. Journal of Glaciology 53, 427434.Google Scholar
Sowers, T., Bender, M., Raynaud, D., Korotkevich, Y., (1992). The δ15N of N 2 in air trapped in polar ice: A tracer of gas transport in the firn and a possible constraint on Ice age-Gas age differences. Journal of Geophysical Research 97, 1568315697.Google Scholar
Spaulding, N.E., Spikes, V.B., Hamilton, G.S., Mayewski, P.A., Dunbar, N.W., Harvey, R.P., Schutt, J., Kurbatov, A.V., (2012). Ice motion and mass balance at the Allan Hills blue-ice area, Antarctica, with implications for paleoclimate reconstructions. Journal of Glaciology 58, 399406.Google Scholar
Steig, E.J., Brook, E.J., White, J.C.W., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., Clow, G.D., (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 9295.Google Scholar
Steig, E.J., Morse, D.L., Waddington, E.D., Stuiver, M., Grootes, P.M., Mayewski, P.A., Twickler, M.S., Whitlow, S.I., (2000). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler: Series A, Physical Geography 82, 213235.Google Scholar
Stenni, B., Buiron, D., Frezzotti, M., Barbante, C., Bard, E., Barnola, J.M., Baroni, M., Baumgartner, M., Capron, E., Castellano, E., Chappellaz, J., Delmonte, B., Falourd, S., Iacumin, P., Jouzel, J., Kipfstuhl, S., Landais, A., Lemieux-Dudon, B., Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R., Narcisi, B., Oerter, H., Parrenin, F., Petit, J.R., Ritz, C., Scarchilli, C., Schilt, A., Schu¨pbach, S., Schwander, J., Selmo, E., Severi, M., Stocker, F., Udisti, R., (2011). Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geoscience 4, 4649.Google Scholar
Stuiver, M., Denton, G.H., Hughes, T.J., Fastook, J., (1981). History of the marine ice sheet in West Antarctica during the last glaciation: a working hypothesis. Denton, G.H., Hughes, T.J. The Last Great Ice Sheets. John Wiley, New York.319436.Google Scholar
Suwa, M., Bender, M.L., (2008). Chronology of the Vostok ice core constrained by O 2 /N 2 ratios of occluded air, and its implication for the Vostok climate records. Quaternary Science Reviews 27, 10931106.Google Scholar
Tzedakis, P.C., Wolff, E.W., Skinner, L.C., Brovkin, V., Hodell, D.A., McManus, J.F., Raynaud, D., (2012). Can we predict the duration of an interglacial?. Climate of the Past 8, 14731485.Google Scholar
Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H., Yoshida, N., (2003). Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509512.Google Scholar
Whillans, I.M., Cassidy, W.A., (1983). Catch a falling star: meteorites and old ice. Science 222, 5557.Google Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, D.R., Szabo, J.B., Kolesar, P.T., Revesz, K.M., (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255260.Google Scholar
Supplementary material: File

Spaulding et al. supplementary material

Table S1

Download Spaulding et al. supplementary material(File)
File 33.3 KB
Supplementary material: PDF

Spaulding et al. supplementary material

Table S2

Download Spaulding et al. supplementary material(PDF)
PDF 65.3 KB
Supplementary material: PDF

Spaulding et al. supplementary material

Table S3

Download Spaulding et al. supplementary material(PDF)
PDF 74.3 KB