Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T04:01:51.622Z Has data issue: false hasContentIssue false

Structural divergence of the rotary ATPases

Published online by Cambridge University Press:  22 March 2011

Stephen P. Muench
Affiliation:
Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
John Trinick
Affiliation:
Institute of Cellular and Molecular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
Michael A. Harrison*
Affiliation:
Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
*
*Author for Correspondence: Dr M. Harrison, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks LS2 9JT, UK.Tel.: (+44) (0)113 3437766; Email: m.a.harrison@leeds.ac.uk

Abstract

The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994). Structure at 2·8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621628.CrossRefGoogle ScholarPubMed
Adamovic, I., Mijailovich, S. M. & Karplus, M. (2008). The elastic properties of the structurally characterized Myosin II S2 subdomain: a molecular dynamics and normal mode analysis. Biophysical Journal 94, 37793789.CrossRefGoogle ScholarPubMed
Aggeler, R., Ogilvie, I. & Capaldi, R. (1997). Rotation of the gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. Journal of Biological Chemistry 272, 1962119624.CrossRefGoogle ScholarPubMed
Angevine, C. M. & Fillingame, R. H. (2003). Aqueous access channels in subunit a of rotary ATP synthase. Journal of Biological Chemistry 278, 60666074.CrossRefGoogle ScholarPubMed
Angevine, C. M., Herold, K. A. G., Vincent, O. D. & Fillingame, R. H. (2007). Aqueous access pathways in ATP synthase subunit a - Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. Journal of Biological Chemistry 282, 90019007.CrossRefGoogle ScholarPubMed
Arai, A., Terres, G., Pink, S. & Forgac, M. (1988). Topography and subunit stoichiometry of the coated vesicle proton pump. Journal of Biological Chemistry 263, 87968802.CrossRefGoogle ScholarPubMed
Arata, Y., Baleja, J. D. & Forgac, M. (2002). Cysteine-directed cross-linking to subunit B suggests that subunit E forms part of the peripheral stalk of the vacuolar H+-ATPase. Journal of Biological Chemistry 277, 33573363.CrossRefGoogle ScholarPubMed
Ariga, T., Muneyuki, E. & Yoshida, M. (2007). F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nature Structural and Molecular Biology 14, 841846.CrossRefGoogle ScholarPubMed
Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A. & Schägger, H. (1998). Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO Journal 17, 71707178.CrossRefGoogle ScholarPubMed
Arselin, G., Giraud, M. F., Dautant, A., Vaillier, J., Brethes, D., Coulary-Salin, B., Schaeffer, J. & Velours, J. (2003). The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. European Journal of Biochemistry 270, 18751884.CrossRefGoogle ScholarPubMed
Baker, L. A. & Rubinstein, J. L. (2008). Angle determination for side views in single particle electron microscopy. Journal of Structural Biology. 162, 468477.CrossRefGoogle ScholarPubMed
Ballhausen, B., Altendorf, K. & Deckers-Hebestreit, G. (2009). Constant c(10) ring stoichiometry in the Escherichia coli ATP synthase analyzed by cross-linking. Journal of Bacteriology 191, 24002404.CrossRefGoogle Scholar
Bandyopadhyay, S. & Allison, W. S. (2004). The ionic track in the F1-ATPase from the thermophilic bacillus PS3. Biochemistry 43, 25332540.CrossRefGoogle ScholarPubMed
Bauerle, C., Ho, M. N., Lindorfer, M. A. & Stevens, T. H. (1993). The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. Journal of Biological Chemistry 268, 1274912757.CrossRefGoogle ScholarPubMed
Belogrudov, G. I., Tomich, J. M. & Hatefi, Y. (1996). Membrane topography and near-neighbor relationships of the mitochondrial ATP synthase subunits e, f, and g. Journal of Biological Chemistry 271, 2034020345.CrossRefGoogle ScholarPubMed
Béltran, C. & Nelson, N. (1992). The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons. Acta Physiologica Scandinavica 607, 4147.Google ScholarPubMed
Bernal, R. A. & Stock, D. (2004). Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12, 17891798.CrossRefGoogle ScholarPubMed
Berriman, J. & Unwin, N. (1994). Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241252.CrossRefGoogle ScholarPubMed
Biegel, E. & Müller, V. (2010). Bacterial Na+-translocating ferredoxin: NAD(+) oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America 107, 1813818142.CrossRefGoogle ScholarPubMed
Biukovic, G., Rossle, M., Gayen, S., Mu, Y. & Grüber, G. (2007). Small-angle x-ray scattering reveals the solution structure of the peripheral stalk subunit H of the A1A0 ATP synthase from Methanocaldococcus jannaschii and its binding to the catalytic A subunit. Biochemistry 46, 20702078.CrossRefGoogle Scholar
Blair, H. C., Teitelbaum, S. L., Ghiselli, R. & Gluck, S. (1989). Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855857.CrossRefGoogle ScholarPubMed
Boekema, E. J., Ubbink-Kok, T., Lolkema, J. S., Brisson, A. & Konings, W. N. (1997). Visualisation of a peripheral stalk in V-type ATPases: evidence for the stator structure essential to rotational catalysis. Proceedings of the National Academy of Sciences of the United States of America 94, 1429114293.CrossRefGoogle ScholarPubMed
Boekema, E. J., van Breemen, J. F. L., Brisson, A., Ubbink-Kok, T., Konings, W. N. & Lolkema, J. S. (1999). Biological motors: connecting stalks in V-type ATPase. Nature 401, 3738.CrossRefGoogle Scholar
Bond, A. & Forgac, M. (2008). The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. Journal of Biological Chemistry 283, 3651336521.CrossRefGoogle ScholarPubMed
Böttcher, B., Bertsche, I., Reuter, R. & Gräber, P. (2000). Direct visualisation of conformational changes in EF0F1 by electron microscopy. Journal of Molecular Biology 296, 449457.CrossRefGoogle ScholarPubMed
Böttcher, B. & Gräber, P. (2000). The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochimica et Biophysica Acta – Bioenergetics 1458, 404416.CrossRefGoogle ScholarPubMed
Böttcher, B., Schwarz, L. & Gräber, P. (1998). Direct indication for the existence of a double stalk in CF0F1. Journal of Molecular Biology 281, 757762.CrossRefGoogle ScholarPubMed
Bowler, M. W., Montgomery, M. G., Leslie, A. G. & Walker, J. E. (2006). How azide inhibits ATP hydrolysis by the F-ATPases. Proceedings of the National Academy of Sciences of the United States of America 103, 86468649.CrossRefGoogle ScholarPubMed
Bowler, M. W., Montgomery, M. G., Leslie, A. G. & Walker, J. E. (2007). Ground state structure of F1-ATPase from bovine heart mitochondria at 1·9 A resolution. Journal of Biological Chemistry 282, 1423814242.CrossRefGoogle ScholarPubMed
Bowman, B. J. & Bowman, E. J. (2002). Mutations in subunit c of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. Journal of Biological Chemistry 277, 39653972.CrossRefGoogle ScholarPubMed
Bowman, B. J., Dschida, W. J., Harris, T. & Bowman, E. J. (1989). The vacuolar ATPase of Neurospora crassa contains an F1-like structure. Journal of Biological Chemistry 264, 1560615612.CrossRefGoogle ScholarPubMed
Boyer, P. D. (1997). The ATP synthase – a splendid molecular machine. Annual Review of Biochemistry. 66, 717749.CrossRefGoogle ScholarPubMed
Breton, S., Smith, P. J. S., Lui, B. & Brown, D. (1996). Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nature Medicine 2, 470472.CrossRefGoogle ScholarPubMed
Brown, D., Gluck, S. & Hartwig, J. (1987). Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. Journal of Cell Biology 105, 16371648.CrossRefGoogle ScholarPubMed
Brown, D., Paunescu, T. G., Breton, S. & Marshansky, V. (2009). Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. Journal of Experimental Biology 212, 17621772.CrossRefGoogle ScholarPubMed
Bulygin, V. V., Duncan, T. M. & Cross, R. L. (2004). Rotor/stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation. Journal of Biological Chemistry 279, 3561635621.CrossRefGoogle ScholarPubMed
Bustos, D. M. & Velours, J. (2005). The modification of the conserved GXXXG motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase. Journal of Biological Chemistry 280, 2900429010.CrossRefGoogle ScholarPubMed
Cabezón, E., Montgomery, M. G., Leslie, A. G. & Walker, J. E. (2003). The structure of the bovine F1-ATPase in complex with its regulatory protein IF1. Nature Structural Biology 10, 744750.CrossRefGoogle ScholarPubMed
Cain, B. D. (2000). Mutagenic analysis of the F0 stator subunits. Journal of Bioenergetics and Biomembranes 32, 365371.CrossRefGoogle ScholarPubMed
Cain, B. D. & Simoni, R. D. (1989). Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. Journal of Biological Chemistry 264, 32923300.CrossRefGoogle ScholarPubMed
Campanella, M., Parker, N., Tan, C. H., Hall, A. M. & Duchen, M. R. (2009). IF1: setting the pace of the F1F0-ATP synthase. Trends in Biochemical Science 34, 343350.CrossRefGoogle Scholar
Capaldi, R. A. & Aggeler, R. (2002). Mechanism of the F1F0-type ATP synthase, a biological rotary motor. Trends in Biochemical Science 27, 154160.CrossRefGoogle Scholar
Capaldi, R. A., Schulenberg, B., Murray, J. & Aggeler, R. (2000). Cross-linking and electron microscopy studies of the structure and functioning of the Escherichia coli ATP synthase. Journal of Experimental Biology 203, 2933.CrossRefGoogle ScholarPubMed
Carbajo, R. J., Kellas, F. A., Yang, J. C., Runswick, M. J., Montgomery, M. G., Walker, J. E. & Neuhaus, D. (2007). How the N-terminal domain of the OSCP subunit of bovine F1F0-ATP synthase interacts with the N-terminal region of an α subunit. Journal of Molecular Biology 368, 310318.CrossRefGoogle Scholar
Chan, T. L., Greenawalt, J. W. & Pedersen, P. L. (1970). Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities. Journal of Cell Biology 45, 291305.CrossRefGoogle ScholarPubMed
Charsky, C. M. H., Schumann, N. J. & Kane, P. M. (2000). Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase. Journal of Biological Chemistry 275, 3723237239.CrossRefGoogle ScholarPubMed
Cherepanov, D. A., Mulkidjanian, A. Y. & Junge, W. (1999). Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Letters 449, 16.CrossRefGoogle ScholarPubMed
Clare, D. K., Orlova, E. V., Finbow, M. E., Harrison, M. A., Findlay, J. B. C. & Saibil, H. R. (2006). An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 14, 11491156.CrossRefGoogle ScholarPubMed
Coskun, Ü., Chaban, Y. L., Lingl, A., Müller, V., Keegstra, W., Boekema, E. J. & Grüber, G. (2004). Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy. Journal of Biological Chemistry 279, 3864438648.CrossRefGoogle ScholarPubMed
Couoh-Cardel, S. J., Uribe-Carvajal, S., Wilkens, S. & García-Trejo, J. J. (2010). Structure of dimeric F1FO-ATP synthase. Journal of Biological Chemistry 285, 3644736455.CrossRefGoogle Scholar
Dautant, A., Velours, J. & Giraud, M. F. (2010). Crystal structure of the Mg.ADP-inhibited state of the yeast F1c10-ATP synthase. Journal of Biological Chemistry 285, 2950229510.CrossRefGoogle ScholarPubMed
Davies, J. M., Hunt, I. E. & Sanders, D. (1994). Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. Proceedings of the National Academy of Sciences of the United States of America 91, 85478551.CrossRefGoogle ScholarPubMed
Davis-Kaplan, S. R., McVEY Ward, D., Shiflett, S. L. & Kaplan, J. (2004). Genome-wide analysis of iron-dependent drowth reveals a novel yeast gene required for vacuolar acidification. Journal of Biological Chemistry 279, 43224329.CrossRefGoogle ScholarPubMed
Devenish, R. J., Prescott, M. & Rodgers, A. J. W. (2008). The structure and function of mitochondrial F1F0-ATP synthases. International Reviews of Cell and Molecular Biology 267, 1.CrossRefGoogle ScholarPubMed
Diab, H., Ohira, M., Liu, M., Cobb, E. & Kane, P. M. (2009). Subunit interactions and requirements for inhibition of the yeast V1-ATPase. Journal of Biological Chemistry 284, 1331613325.CrossRefGoogle ScholarPubMed
Dickson, V. K., Silvester, J. A., Fearnley, I. M., Leslie, A. G. & Walker, J. E. (2006). On the structure of the stator of the mitochondrial ATP synthase. EMBO Journal 25, 29112918.CrossRefGoogle ScholarPubMed
Diepholz, M., Börsch, M. & Böttcher, B. (2008a). Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochemical Society Transactions 36, 10271031.CrossRefGoogle ScholarPubMed
Diepholz, M., Venzke, D., Prinz, S., Batisse, C., Flörchinger, B., Rössle, M., Svergun, D. I., Böttcher, B. & Féthière, J. (2008b). A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16, 17891798.CrossRefGoogle ScholarPubMed
Diez, M., Zimmermann, B., Börsch, M., Konig, M., Schweinberger, E., Steigmiller, S., Reuter, R., Felekyan, S., Kudryavtsev, V., Seidel, C. A. M. & Gräber, P. (2004). Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nature Structural and Molecular Biology 11, 135141.CrossRefGoogle ScholarPubMed
Dimroth, P., Von Ballmoos, C. & Meier, T. (2006). Catalytic and mechanical cycles in F-ATP synthases: fourth in the cycles review series. EMBO Reports 7, 276282.CrossRefGoogle ScholarPubMed
Dixon, N., Pali, T., Kee, T. P., Ball, S., Harrison, M. A., Findlay, J. B. C., Nyman, J., Väänänen, K., Finbow, M. E. & Marsh, D. (2008). Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane V0-sector. Biophysical Journal 94, 506514.CrossRefGoogle Scholar
Dixon, N., Pali, T., Kee, T. P. & Marsh, D. (2004). Spin-labelled vacuolar-ATPase inhibitors in lipid membranes. Biochimica et Biophysica Acta 1665, 177183.CrossRefGoogle ScholarPubMed
Domgall, I., Venzke, D., Luttge, U., Ratajczak, R. & Böttcher, B. (2002). Three-dimensional map of a plant V-ATPase based on electron microscopy. Journal of Biological Chemistry 277, 1311513121.CrossRefGoogle ScholarPubMed
Drory, O., Frolow, F. & Nelson, N. (2004). Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Reports 5, 11481152.CrossRefGoogle ScholarPubMed
Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L. & Cross, R. L. (1995). Rotation of subunits during catalysis by Escherichia coli F1- ATPase. Proceedings of the National Academy of Sciences of the United States of America 92, 1096410968.CrossRefGoogle ScholarPubMed
Dunn, S. D., Revington, M., Cipriano, D. J. & Shilton, B. H. (2000). The b-subunit of Escherichia coli ATP synthase. Journal of Bioenergetics & Biomembranes 32, 347355.CrossRefGoogle ScholarPubMed
Elad, N., Clare, D. K., Saibil, H. R. & Orlova, E. V. (2008). Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. Journal of Structural Biology 162, 108120.CrossRefGoogle Scholar
Elston, T., Wang, H. & Oster, G. (1998). Energy transduction in ATP synthase. Nature 391, 510513.CrossRefGoogle ScholarPubMed
Esteban, O., Bernal, R. A., Donohoe, M., Videler, H., Sharon, M., Robinson, C. V. & Stock, D. (2008). Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. Journal of Biological Chemistry 283, 25952603.CrossRefGoogle Scholar
Feng, H., Cheng, T., Pavlos, N. J., Yip, K. H. M., Carrello, A., Seeber, R., Eidne, K., Zheng, M. H. & Xu, J. (2008). Cytoplasmic terminus of vacuolar type proton pump accessory subunit Ac45 is required for proper interaction with V0 domain subunits and efficient osteoclastic bone resorption. Journal of Biological Chemistry 283, 1319413204.CrossRefGoogle ScholarPubMed
Feniouk, B. A., Kato-Yamada, Y., Yoshida, M. & Suzuki, T. (2010). Conformational transitions of subunit ε in ATP synthase from thermophilic Bacillus PS3. Biophysical Journal 98, 434442.CrossRefGoogle ScholarPubMed
Féthière, J., Venzke, D., Diepholz, M., Seybert, A., Geerlof, A., Gentzel, M., Wilm, M. & Böttcher, B. (2004). Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G. Journal of Biological Chemistry 279, 4067040676.CrossRefGoogle ScholarPubMed
Féthière, J., Venzke, D., Madden, D. R. & Böttcher, B. (2005). Peripheral stator of the yeast V-ATPase: stoichiometry and specificity of interaction between the EG complex and subunits C and H. Biochemistry 44, 1590615914.CrossRefGoogle ScholarPubMed
Fillingame, R. H., Angevine, C. M. & Dmitriev, O. Y. (2002). Coupling proton movements to c-ring rotation in F1F0 ATP synthase: aqueous access channels and helix rotations at the a-c interface. Biochimica et Biophysica Acta 1555, 2936.CrossRefGoogle Scholar
Forgac, M. (2007). Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Reviews Molecular and Cellular Biology 8, 917929.CrossRefGoogle ScholarPubMed
Frattini, A., Orchard, P. J., Sobacchi, C., Giliani, S., Abinun, M., Mattsson, J. P., Keeling, D. J., Andersson, A. K., Wallbrandt, P., Zecca, L., Notarangelo, L. D., Vezzoni, P. & Villa, A. (2000). Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature Genetics 25, 343346.CrossRefGoogle ScholarPubMed
Fritz, M., Klyszejko, A. L., Morgner, N., Vonck, J., Brutschy, B., Muller, D. J., Meier, T. & Müller, V. (2008). An intermediate step in the evolution of ATPases – a hybrid F0−V0 rotor in a bacterial Na+ F1F0 ATP synthase. FEBS Journal 275, 19992007.CrossRefGoogle Scholar
Furuike, S., Hossain, M. D., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M. & Kinosita, K. (2008). Axle-less F1-ATPase rotates in the correct direction. Science 319, 955958.CrossRefGoogle ScholarPubMed
Futai, M., Omote, H., Sambongi, Y. & Wada, Y. (2000). Synthase (H+ ATPase): coupling between catalysis, mechanical work, and proton translocation. Biochimica et Biophysica Acta – Bioenergetics 1458, 276288.CrossRefGoogle ScholarPubMed
Gibbons, C., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2000). The structure of the central stalk in bovine F1-ATPase at 2·4 Å resolution. Nature Structural and Molecular Biology 7, 10551061.Google ScholarPubMed
Gogol, E. P., Johnston, E., Aggeler, R. & Capaldi, R. A. (1990). Ligand-dependent structural variations in Escherichia coli F1 ATPase revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America 87, 95859589.CrossRefGoogle ScholarPubMed
Gräf, R., Harvey, W. R. & Wieczorek, H. (1996). Purification and properties of a cytosolic V1-ATPase. Journal of Biological Chemistry 271, 2090820913.CrossRefGoogle ScholarPubMed
Gregorini, M., Wang, J., Xie, X. S., Milligan, R. A. & Engel, A. (2007). Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. Journal of Structural Biology 158, 445454.CrossRefGoogle ScholarPubMed
Grüber, G., Radermacher, M., Ruiz, T., Godovac-Zimmermann, J., Canas, B., Kleine-Kohlbrecher, D., Huss, M., Harvery, W. R. & Wieczorek, H. (2000). Three-dimensional structure and subunit topology of the V1 ATPase from Manduca sexta midgut. Biochemistry 39, 86098616.CrossRefGoogle ScholarPubMed
Grüber, G., Svergun, D. I., Coskun, Ü., Lemker, T., Koch, M. H. J., Schägger, H. & Müller, V. (2001a). Structural insights into the A1 ATPase from the archaeon, Methanosarcina mazei Gö1. Biochemistry 40, 18901896.CrossRefGoogle ScholarPubMed
Grüber, G., Wieczorek, H., Harvey, W. R. & Müller, V. (2001b). Structure–function relationships of A-, F- and V-ATPases. Journal of Experimental Biology 204, 25972605.CrossRefGoogle Scholar
Hara, K. Y., Kato-Yamada, Y., Kikuchi, Y., Hisabori, T. & Yoshida, M. (2001). The Role of the β DELSEED motif of F1-ATPase: propagation of the inhibitory effect of the ∊ subunit. Journal of Biological Chemistry 276, 2396923973.CrossRefGoogle Scholar
Hara, K. Y., Noji, H., Bald, D., Yasuda, R., Kinosita, K. & Yoshida, M. (2000). The role of the DELSEED motif of the β subunit in rotation of F1-ATPase. Journal of Biological Chemistry 275, 1426014263.CrossRefGoogle ScholarPubMed
Harrison, M. A., Durose, L., Song, C. F., Barratt, E., Trinick, J., Jones, R. & Findlay, J. B. C. (2003). Structure and function of the vacuolar H+-ATPase: moving from low resolution models to high resolution structures. Journal of Bioenergetics and Biomembranes 35, 337345.CrossRefGoogle ScholarPubMed
Häsler, K., Pänke, O. & Junge, W. (1999). On the stator of rotary ATP synthase: the binding strength of subunit δ to (αβ)3 as determined by fluorescence correlation spectroscopy. Biochemistry 38, 1375913765.CrossRefGoogle Scholar
Hausrath, A. C., Capaldi, R. A. & Matthews, B. W. (2001). The conformation of the ∊ and g-subunits within the Escherichia coli F1 ATPase. Journal of Biological Chemistry 276, 4722747232.CrossRefGoogle Scholar
Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Quarterly Reviews of Biophysics 37, 313.CrossRefGoogle ScholarPubMed
Hilario, E. & Gogarten, J. P. (1998). The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. Journal of Molecular Evolution 46, 703715.CrossRefGoogle Scholar
Hinton, A., Sennoune, S. R., Bond, S., Fang, M., Reuveni, M., Sahagian, G. G., Jay, D., Martinez-Zaguilan, R. & Forgac, M. (2009). Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. Journal of Biological Chemistry 284, 1640016408.CrossRefGoogle ScholarPubMed
Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y. & Futai, M. (2003). Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and c subunits. Journal of Biological Chemistry 278, 2371423719.CrossRefGoogle Scholar
Hirata, T., Nakamura, N., Omote, H., Wada, Y. & Futai, M. (2000). Regulation and reversibility of vacuolar H+-ATPase. Journal of Biological Chemistry 275, 386389.CrossRefGoogle ScholarPubMed
Hochstein, L. I. & Stan-Lotter, H. (1992). Purification and properties of an ATPase from Sulfolobus solfataricus. Archives of Biochemistry and Biophysics 295, 153160.CrossRefGoogle ScholarPubMed
Hofmann, K. & Stoffel, W. (1993). TMbase – a database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler 374, 166173.Google Scholar
Hong-Hermesdorf, A., Brux, A., Grüber, A., Grüber, G. & Schumacher, K. (2006). A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Letters 580, 932939.CrossRefGoogle ScholarPubMed
Hunt, I. E. & Bowman, B. J. (1997). The intriguing evolution of the b and G subunits in F-type and V-type ATPases: isolation of the vma-10 gene from Neurospora crassa. Journal of Bioenergetics and Biomembranes 29, 533540.CrossRefGoogle Scholar
Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., Altendorf, K. & Wieczorek, H. (2002). Concanamycin A, the specific inhibitor of V-ATPases, binds to the V0 subunit c. Journal of Biological Chemistry 277, 4054440548.CrossRefGoogle Scholar
Huss, M. & Wieczorek, H. (2007). Influence of ATP and ADP on dissociation of the V-ATPase into its V1 and V0 complexes. FEBS Letters 581, 55665572.CrossRefGoogle Scholar
Hutcheon, M. L., Duncan, T. M., Ngai, H. & Cross, R. L. (2001). Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F0 sector of Escherichia coli ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 98, 85198524.CrossRefGoogle Scholar
Imamura, H., Ikeda, C., Yoshida, M. & Yokoyama, K. (2004). The F subunit of Thermus thermophilus V1-ATPase promotes ATPase activity but is not necessary for rotation. Journal of Biological Chemistry 279, 1808518090.CrossRefGoogle Scholar
Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M. & Yokoyama, K. (2003). Evidence for rotation of V1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 100, 23122315.CrossRefGoogle ScholarPubMed
Imamura, H., Takeda, M., Funamoto, S., Shimabukuro, K., Yoshida, M. & Yokoyama, K. (2005). Rotation scheme of V1-motor is different from that of F1-motor. Proceedings of the National Academy of Sciences of the United States of America 102, 1792917933.CrossRefGoogle ScholarPubMed
Inatomi, K. (1986). Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. Journal of Bacteriology 167, 837841.CrossRefGoogle ScholarPubMed
Inoue, T. & Forgac, M. (2005). Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 Domain. Journal of Biological Chemistry 280, 2789627903.CrossRefGoogle Scholar
Iwata, M., Imamura, H., Stambouli, E., Ikeda, C., Tamakoshi, M., Nagata, K., Makyio, H., Hankamer, B., Barber, J., Yoshida, M., Yokoyama, K. & Iwata, S. (2004). Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proceedings of the National Academy of Sciences of the United States of America 101, 5964.CrossRefGoogle Scholar
Jefferies, K. C. & Forgac, M. (2008). Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Journal of Biological Chemistry 283, 45124519.CrossRefGoogle Scholar
Jiang, W. & Fillingame, R. H. (1998). Interacting helical faces of subunits a and c in the F1F0ATP synthase of Escherichia coli defined by disulfide cross-linking. Proceedings of the National Academy of Sciences of the United States of America 95, 66076612.CrossRefGoogle Scholar
Jiang, W., Hermolin, J. & Fillingame, R. H. (2001). The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proceedings of the National Academy of Sciences of the United States of America 98, 49664971.CrossRefGoogle ScholarPubMed
Jones, P. C. & Fillingame, R. H. (1998). Genetic fusions of subunit c in the F0 sector of H+-transporting ATP synthase. Journal of Biological Chemistry 273, 2970129705.CrossRefGoogle ScholarPubMed
Jones, P. C., Hermolin, J., Jiang, W. & Fillingame, R. H. (2000). Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme. Journal of Biological Chemistry 275, 3134031346.CrossRefGoogle Scholar
Jones, R. P. O., Durose, L. J., Findlay, J. B. C. & Harrison, M. A. (2005). Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44, 39333941.CrossRefGoogle Scholar
Jones, R. P. O., Durose, L. J., Phillips, C., Keen, J. N., Findlay, J. B. C. & Harrison, M. A. (2010). A site-directed cross-linking approach to the characterization of subunit E-subunit G contacts in the vacuolar H+-ATPase stator. Molecular Membrane Biology 27, 147159.CrossRefGoogle Scholar
Junge, W. (2004). Protons, proteins and ATP. Photosynthesis Research 80, 197221.CrossRefGoogle ScholarPubMed
Junge, W., Lill, H. & Engelbrecht, S. (1997). ATP synthase: an electrochemical transducer with rotatory mechanics. Trends in Biochemical Science 22, 420423.CrossRefGoogle ScholarPubMed
Junge, W., Sielaff, H. & Engelbrecht, S. (2009). Torque generation and elastic power transmission in the rotary F0F1-ATPase. Nature 459, 364370.CrossRefGoogle Scholar
Kabaleeswaran, V., Puri, N., Walker, J. E., Leslie, A. G. W. & Mueller, D. M. (2006). Novel features of the rotary catalytic mechanism revealed in the structure of yeast F-1 ATPase. EMBO Journal 25, 54335442.CrossRefGoogle Scholar
Kakinuma, Y., Yamato, I. & Murata, T. (1999). Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae. Journal of Bioenergetics and Biomembranes 31, 714.CrossRefGoogle ScholarPubMed
Kane, P. M. (1995). Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. Journal of Biological Chemistry 270, 1702517032.CrossRefGoogle ScholarPubMed
Karrasch, S. & Walker, J. E. (1999). Novel features in the structure of bovine ATP synthase. Journal of Molecular Biology 290, 379384.CrossRefGoogle ScholarPubMed
Kato, S., Yoshida, M. & Kato-Yamada, Y. (2007). Role of the ∊ subunit of thermophilic F1-ATPase as a sensor for ATP. Journal of Biological Chemistry 282, 3761837623.CrossRefGoogle ScholarPubMed
Kato-Yamada, Y. & Yoshida, M. (2003). Isolated ∊ subunit of thermophilic F1-ATPase binds ATP. Journal of Biological Chemistry 278, 3601336016.CrossRefGoogle ScholarPubMed
Kato-Yamada, Y., Yoshida, M. & Hisabori, T. (2000). Movement of the helical domain of the ∊ subunit is required for the activation of thermophilic F1-ATPase. Journal of Biological Chemistry 275, 3574635750.CrossRefGoogle ScholarPubMed
Kawasaki-Nishi, S., Nishi, T. & Forgac, M. (2001). Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proceedings of the National Academy of Sciences of the United States of America 98, 1239712402.CrossRefGoogle ScholarPubMed
Kinosita, K., Yasuda, R., Noji, H., Ishiwata, S. & Yoshida, M. (1998). F1-ATPase: a rotary motor made of a single molecule. Cell 93, 2124.CrossRefGoogle ScholarPubMed
Kish-Trier, E., Briere, L. A., Dunn, S. D. & Wilkens, S. (2008). The stator complex of the A1A0-ATP synthase- structural characterization of the E and H subunits. Journal of Molecular Biology 375, 673685.CrossRefGoogle Scholar
Kish-Trier, E. & Wilkens, S. (2009a). Domain architecture of the stator complex of the A1A0-ATP synthase from Thermoplasma acidophilum. Journal of Biological Chemistry 284, 1203112040.CrossRefGoogle ScholarPubMed
Kish-Trier, E. & Wilkens, S. (2009b). Interaction of the Thermoplasma acidophilum A1A0-ATP synthase peripheral stalk with the catalytic domain. FEBS Letters 583, 31213126.CrossRefGoogle ScholarPubMed
Kitagawa, N., Mazon, H., Heck, A. J. R. & Wilkens, S. (2008). Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry. Journal of Biological Chemistry 283, 33293337.CrossRefGoogle Scholar
Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W. & Manolson, M. F. (2000). Evidence that the NH2 terminus of Vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. Journal of Biological Chemistry 275, 1544915457.CrossRefGoogle ScholarPubMed
Langemeyer, L. & Engelbrecht, S. (2007). Essential arginine in subunit a and aspartate in subunit c of F0F1 ATP synthase: effect of repositioning within Helix 4 of subunit a and Helix 2 of subunit c. Biochimica et Biophysica Acta 1767, 9981005.CrossRefGoogle Scholar
Lau, W. C. Y., Baker, L. A. & Rubinstein, J. L. (2008). Cryo-EM structure of the yeast ATP synthase. Journal of Molecular Biology 382, 12561264.CrossRefGoogle ScholarPubMed
Lau, W. C. Y. & Rubinstein, J. L. (2010). Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V0 motor. Proceedings of the National Academy of Sciences of the United States of America 107, 13671372.CrossRefGoogle Scholar
Laubinger, G., Deckers-Hebestreit, G., Altendorf, K. & Dimroth, P. (1990). A hybrid adenosine triphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. Biochemistry 29, 54585463.CrossRefGoogle ScholarPubMed
Lee, L. K., Stewart, A. G., Donohoe, M., Bernal, R. A. & Stock, D. (2010a). The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nature Structural and Molecular Biology 17, 373–79.CrossRefGoogle ScholarPubMed
Lee, S. K., Li, W., Ryu, S. E., Rhim, T. & Ahnn, J. (2010b). Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochimica et Biophysica Acta 1797, 16871695.CrossRefGoogle ScholarPubMed
Leng, X. H., Manolson, M. F. & Forgac, M. (1998). Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. Journal of Biological Chemistry 273, 67176723.CrossRefGoogle ScholarPubMed
Leng, X. H., Manolson, M. F., Liu, Q. & Forgac, M. (1996). Site-directed mutagenesis of the 100-kda subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. Journal of Biological Chemistry 271, 2248722493.CrossRefGoogle ScholarPubMed
Leng, X. H., Nishi, T. & Forgac, M. (1999). Transmembrane topography of the 100-kda a subunit (Vph1p) of the yeast vacuolar proton translocating ATPase. Journal of Biological Chemistry 274, 1465514661.CrossRefGoogle ScholarPubMed
Li, Y. P., Chen, W., Liang, Y. Q., Li, E. & Stashenko, P. (1999). Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genetics 23, 447451.CrossRefGoogle ScholarPubMed
Lingl, A., Huber, H., Stetter, K. O., Mayer, F., Kellermann, J. & Müller, V. (2003). Isolation of a complete A1A0 ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii. Extremophiles 7, 249257.CrossRefGoogle ScholarPubMed
Lokanath, N. K., Matsuura, Y., Kuroishi, C., Takahashi, N. & Kunishima, N. (2007). Dimeric core structure of modular stator subunit E of archaeal H+-ATPase. Journal of Molecular Biology 366, 933944.CrossRefGoogle ScholarPubMed
Lu, M., Vergara, S., Zhang, L., Holliday, L. S., Aris, J. & Gluck, S. L. (2002). The amino-terminal domain of the E subunit of vacuolar H+-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. Journal of Biological Chemistry 277, 3840938415.CrossRefGoogle Scholar
Lücken, U., Gogol, E. P. & Capaldi, R. A. (1990). Structure of the ATP synthase complex (ECF1F0) of Escherichia coli from cryoelectron microscopy. Biochemistry 29, 53395343.CrossRefGoogle ScholarPubMed
Ludwig, J., Kerscher, S., Brandt, U., Pfeiffer, K., Getlawi, F., Apps, D. K. & Schägger, H. (1998). Identification and characterisation of a novel 9·2-kDa membrane sector-associated protein of vacuolar proton ATPase form chromaffin granules. Journal of Biological Chemistry 273, 1093910947.CrossRefGoogle Scholar
Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E. & Karplus, M. (2002). A dynamic analysis of the rotation mechanism for conformational change in F1-ATPase. Structure 10, 921931.CrossRefGoogle Scholar
Maegawa, Y., Morita, H., Iyaguchi, D., Yao, M., Watanabe, N. & Tanaka, I. (2006). Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk. Acta Crystallographica D 62, 483488.CrossRefGoogle Scholar
Maher, M. J., Akimoto, S., Iwata, M., Nagata, K., Hori, Y., Yoshida, M., Yokoyama, S., Iwata, S. & Yokoyama, K. (2009). Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO Journal 28, 37713779.CrossRefGoogle ScholarPubMed
Makyio, H., Iino, R., Ikeda, C., Imamura, H., Tamakoshi, M., Iwata, M., Stock, D., Bernal, R. A., Carpenter, E. P., Yoshida, M., Yokoyama, K. & Iwata, S. (2005). Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus. EMBO Journal 24, 39743983.CrossRefGoogle ScholarPubMed
Mao, H. Z. & Weber, J. (2007). Identification of the βTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Proceedings of the National Academy of Sciences of the United States of America 104, 1847818483.CrossRefGoogle ScholarPubMed
Marshansky, V. & Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Current Opinion in Cell Biology 20, 415426.CrossRefGoogle Scholar
Masaike, T., Koyama-Horibe, F., Oiwa, K., Yoshida, M. & Nishizaka, T. (2008). Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80o and 40o substep rotations. Nature Structural and Molecular Biology 15, 13261333.CrossRefGoogle Scholar
Mclachlin, D. T., Bestard, J. A. & Dunn, S. D. (1998). The b and δ subunits of the Escherichia coli ATP synthase interact via residues in their C-terminal regions. Journal of Biological Chemistry 273, 1516215168.CrossRefGoogle Scholar
Mclachlin, D. T., Coveny, A. M., Clark, S. M. & Dunn, S. D. (2000). Site-directed cross-linking of b to the α, β, and a subunits of the Escherichia coli ATP synthase. Journal of Biological Chemistry 275, 1757117577.CrossRefGoogle Scholar
Meier, T., Ferguson, S. A., Cook, G. M., Dimroth, P. & Vonck, J. (2006). Structural investigations of the membrane-embedded rotor ring of the F-ATPase from Clostridium paradoxum. Journal of Bacteriology 188, 77597764.CrossRefGoogle ScholarPubMed
Meier, T., Polzer, P., Diederichs, K., Welte, W. & Dimroth, P. (2005a). Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308, 659662.CrossRefGoogle ScholarPubMed
Meier, T., Yu, J., Raschle, T., Henzen, F., Dimroth, P. & Muller, D. J. (2005b). Structural evidence for a constant c11 ring stoichiometry in the sodium F-ATP synthase. FEBS Journal 272, 54745483.CrossRefGoogle ScholarPubMed
Menz, R. I., Walker, J. E. & Leslie, A. G. W. (2001). Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331341.CrossRefGoogle ScholarPubMed
Merkulova, M., McKee, M., Dip, P. V., Grüber, G. & Marshansky, V. (2010). N-terminal domain of V-ATPase a2-subunit displays integral membrane protein properties. Protein Science 19, 18501862.CrossRefGoogle ScholarPubMed
Merzendorfer, H., Huss, M., Schmid, R., Harvey, W. R. & Wieczorek, H. (1999). A novel insect V-ATPase subunit M9·7 is glycosylated extensively. Journal of Biological Chemistry 274, 1737217378.CrossRefGoogle ScholarPubMed
Merzendorfer, H., Reineke, S., Zhao, X.-F., Jacobmeier, B., Harvey, W. R. & Wieczorek, H. (2000). The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H and putative isoforms. Biochimica et Biophysica Acta 1467, 369379.CrossRefGoogle Scholar
Meyer zu Tittingdorf, J. M. W., Rexroth, S., Schafer, E., Schlichting, R., Giersch, C., Dencher, N. A. & Seelert, H. (2004). The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state. Biochimica et Biophysica Acta 1659, 9299.CrossRefGoogle Scholar
Minauro-Sanmiguel, F., Wilkens, S. & García, J. J. (2005). Structure of dimeric mitochondrial ATP synthase: novel Fo bridging features and the structural basis of mitochondrial cristae biogenesis. Proceedings of the National Academy of Sciences of the United States of America 102, 1235612358.CrossRefGoogle Scholar
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144148.CrossRefGoogle ScholarPubMed
Moore, K. J. & Fillingame, R. H. (2008). Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. Journal of Biological Chemistry 283, 3172631735.CrossRefGoogle ScholarPubMed
Morel, N. (2003). Neurotransmitter release: the dark side of the vacuolar-H+-ATPase. Biology of the Cell 95, 453457.CrossRefGoogle ScholarPubMed
Muench, S. P., Huss, M., Song, C. F., Phillips, C., Wieczorek, H., Trinick, J. & Harrison, M. A. (2009). Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. Journal of Molecular Biology 386, 389399.CrossRefGoogle ScholarPubMed
Mulkidjanian, A., Galperin, M., Makarova, K., Wolf, Y. & Koonin, E. (2008). Evolutionary primacy of sodium bioenergetics. Biology Direct 3, 13.CrossRefGoogle ScholarPubMed
Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y. & Koonin, E. V. (2007). Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nature Reviews Microbiology 5, 892899.CrossRefGoogle ScholarPubMed
Müller, M., Pänke, O., Junge, W. & Engelbrecht, S. (2002). F1-ATPase, the C-terminal end of subunit γ is not required for ATP hydrolysis-driven rotation. Journal of Biological Chemistry 277, 2330823313.CrossRefGoogle Scholar
Müller, V. & Grüber, G. (2003). ATP synthases: structure, function and evolution of unique energy converters. Cellular and Molecular Life Sciences 60, 474494.CrossRefGoogle ScholarPubMed
Müller, V., Lingl, A., Lewalter, K. & Fritz, M. (2005). ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. Journal of Bioenergetics and Biomembranes 37, 455460.CrossRefGoogle ScholarPubMed
Müller, V., Ruppert, C. & Lemker, T. (1999). Structure and function of the A(1)A(0)-ATPases from methanogenic archaea. Journal of Bioenergetics and Biomembranes 31, 1527.CrossRefGoogle Scholar
Muneyuki, E., Watanabe-Nakayama, T., Suzuki, T., Yoshida, M., Nishizaka, T. & Noji, H. (2007). Single molecule energetics of F1-ATPase motor. Biophysical Journal 92, 18061812.CrossRefGoogle ScholarPubMed
Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. & Walker, J. E. (2005). Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308, 654659.CrossRefGoogle ScholarPubMed
Nakano, M., Imamura, H., Toei, M., Tamakoshi, M., Yoshida, M. & Yokoyama, K. (2008). ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus. Journal of Biological Chemistry 283, 2078920796.CrossRefGoogle ScholarPubMed
Nelson, N., Perzov, N., Cohen, A., Hagai, K., Padler, V. & Nelson, H. (2000). The cellular biology of proton-motive force generation by V-ATPases. Journal of Experimental Biology 203, 8995.CrossRefGoogle ScholarPubMed
Nishizaka, T. (2004). Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nature Structural and Molecular Biology 11, 142148.CrossRefGoogle ScholarPubMed
Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. (1997). Direct observation of the rotation of F1-ATPase. Nature 386, 299302.CrossRefGoogle ScholarPubMed
Norgett, E. E., Borthwick, K. J., Al Lamki, R. S., Su, Y., Smith, A. N. & Karet, F. E. (2007). V1 and V0 domains of the human H+-ATPase are linked by an interaction between the G and a subunits. Journal of Biological Chemistry 282, 1442114427.CrossRefGoogle Scholar
Numoto, N., Hasegawa, Y., Takeda, K. & Miki, K. (2009). Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Reports 10, 12281234.CrossRefGoogle ScholarPubMed
Ogilvie, I., Aggeler, R. & Capaldi, R. A. (1997). Cross-linking of the δ subunit to one of the three α subunits has no effect on functioning, as expected if δ is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase. Journal of Biological Chemistry 272, 1665216656.CrossRefGoogle ScholarPubMed
Okuno, D., Fujisawa, R., Iino, R., Hirono-Hara, Y., Imamura, H. & Noji, H. (2008). Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proceedings of the National Academy of Sciences of the United States of America 105, 2072220727.CrossRefGoogle ScholarPubMed
Oot, R. A. & Wilkens, S. (2010). Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. Journal of Biological Chemistry 285, 2465424664.CrossRefGoogle ScholarPubMed
Oster, G. & Wang, H. Y. (2000a). Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochimica et Biophysica Acta 1458, 482510.CrossRefGoogle ScholarPubMed
Oster, G. & Wang, H. Y. (2000b). Why is the mechanical efficiency of F-1-ATPase so high? Journal of Bioenergetics and Biomembranes 32, 459469.CrossRefGoogle ScholarPubMed
Owegi, M. A., Pappas, D. L., Finch, M. W. Jr., Bilbo, S. A., Resendiz, C. A., Jacquemin, L. J., Warrier, A., Trombley, J. D., McCulloch, K. M., Margalef, K. L. M., Mertz, M. J., Storms, J. M., Damin, C. A. & Parra, K. J. (2006). Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. Journal of Biological Chemistry 281, 3000130014.CrossRefGoogle ScholarPubMed
Pali, T., Dixon, N., Kee, T. P. & Marsh, D. (2004). Incorporation of the V-ATPase inhibitors concanamycin and indole pentadiene in lipid membranes. Spin-label EPR studies. Biochimica et Biophysica Acta 1663, 1418.CrossRefGoogle ScholarPubMed
Pänke, O., Cherepanov, D. A., Gumbiowski, K., Engelbrecht, S. & Junge, W. (2001). Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophysical Journal 81, 12201233.CrossRefGoogle ScholarPubMed
Parra, K. J., Keenan, K. L. & Kane, P. M. (2000). The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. Journal of Biological Chemistry 275, 2176121767.CrossRefGoogle Scholar
Penczek, P. A., Chao, Y., Frank, J. & Spahn, C. M. T. (2006). Estimation of variance in single particle reconstruction using the bootstrap technique. Journal of Structural Biology 154, 168183.CrossRefGoogle ScholarPubMed
Pisa, K. Y., Huber, H., Thom, M. & Müller, V. (2007a). A sodium ion-dependent A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS Journal 274, 39283938.CrossRefGoogle Scholar
Pisa, K. Y., Weidner, C., Maischak, H., Kavermann, H. & Müller, V. (2007b). The coupling ion in the methanoarchaeal ATP synthases: H+ vs. Na+ in the A(1)A(0) ATP synthase from the archaeon Methanosarcina mazei Gö1. FEMS Microbiology Letters 277, 5663.CrossRefGoogle Scholar
Pogoryelov, D., Reichen, C., Klyszejko, A. L., Brunisholz, R., Muller, D. J., Dimroth, P. & Meier, T. (2007). The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. Journal of Bacteriology 189, 58955902.CrossRefGoogle ScholarPubMed
Pogoryelov, D., Yu, J., Meier, T., Vonck, J., Dimroth, P. & Muller, D. J. (2005). The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Reports 6, 10401044.CrossRefGoogle Scholar
Powell, B., Graham, L. A. & Stevens, T. H. (2000). Molecular characterization of the yeast vacuolar H+-ATPase proton pore. Journal of Biological Chemistry 275, 2365423660.CrossRefGoogle ScholarPubMed
Pu, J. & Karplus, M. (2008). How subunit coupling produces the γ subunit rotary motion in F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 105, 11921197.CrossRefGoogle ScholarPubMed
Pullman, M. E. & Monroy, G. C. (1963). A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. Journal of Biological Chemistry 238, 37623769.CrossRefGoogle ScholarPubMed
Qi, J. & Forgac, M. (2008). Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase. Journal of Biological Chemistry 283, 1927419282.CrossRefGoogle ScholarPubMed
Radermacher, M., Ruiz, T., Wieczorek, H. & Grüber, G. (2001). The structure of the V1-ATPase by electron microscopy of single particles. Journal of Structural Biology 135, 2637.CrossRefGoogle Scholar
Rahlfs, S., Aufurth, S. & Müller, V. (1999). The Na+-F1F0-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kDa. Journal of Biological Chemistry 274, 3399934004.CrossRefGoogle Scholar
Rastogi, V. K. & Girvin, M. E. (1999). Structural changes linked to proton translocation by subunit c in the ATP synthase. Nature 402, 263268.CrossRefGoogle ScholarPubMed
Rees, D. M., Leslie, A. G. W. & Walker, J. E. (2009). The structure of the membrane extrinsic region of bovine ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 106, 2159721601.CrossRefGoogle ScholarPubMed
Rishikesan, S., Gayen, S., Thaker, Y. R., Vivekanandan, S., Manimekalai, M. S. S., Yau, Y. H., Shochat, S. G. & Grüber, G. (2009). Assembly of subunit d (Vma6p) and G (Vma10p) and the NMR solution structure of subunit G (G(1–59)) of the Saccharomyces cerevisiae V1V0 ATPase. Biochimica et Biophysica Acta 1787, 242251.CrossRefGoogle Scholar
Rishikesan, S., Thaker, Y. R., Priya, R., Gayen, S., Manimekalai, M. S. S., Hunke, C. & Grüber, G. (2008). Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Molecular Membrane Biology 25, 400410.CrossRefGoogle ScholarPubMed
Rodgers, A. J. W. & Capaldi, R. A. (1998). The second stalk composed of the b- and delta-subunits connects F0 to F1 via and alpha-subunit in the Escherichia coli ATP synthase. Journal of Biological Chemistry 273, 2940629410.CrossRefGoogle Scholar
Rodgers, A. J. W. & Wilce, M. C. J. (2000). Structure of the g-e complex of ATP synthase. Nature Structural and Molecular Biology 7, 10511054.Google Scholar
Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M. & Capaldi, R. A. (1997). The subunit delta-subunit b domain of the Escherichia coli F1F0-ATPase. Journal of Biological Chemistry 272, 3105831064.CrossRefGoogle ScholarPubMed
Rondelez, Y., Tresset, G., Nakashima, T., Kato-Yamada, Y., Fujita, H., Takeuchi, S. & Noji, H. (2005). Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773777.CrossRefGoogle ScholarPubMed
Rosenthal, P. B. & Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. Journal of Molecular Biology 333, 721745.CrossRefGoogle ScholarPubMed
Rubinstein, J. L., Walker, J. E. & Henderson, R. (2003). Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO Journal 22, 61826192.CrossRefGoogle ScholarPubMed
Sabbert, D., Engelbrecht, S. & Junge, W. (1996). Intersubunit rotation in active F-ATPase. Nature 381, 623625.CrossRefGoogle ScholarPubMed
Sagermann, M., Stevens, T. H. & Matthews, B. W. (2001). Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 98, 71347139.CrossRefGoogle Scholar
Sambade, M. & Kane, P. M. (2004). The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. Journal of Biological Chemistry 279, 1736117365.CrossRefGoogle Scholar
Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y. & Futai, M. (1999). Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 17221724.CrossRefGoogle Scholar
Schäfer, I. B., Bailer, S. M., Duser, M. G., Börsch, M., Bernal, R. A., Stock, D. & Grüber, G. (2006). Crystal structure of the archaeal A1A0 ATP synthase subunit B from Methanosarcine mazei Gö1: implications of nucleotide-binding differences in the major A1A0 subunits A and B. Journal of Molecular Biology 358, 725740.CrossRefGoogle Scholar
Scheres, S. H. W., Gao, H., Valle, M., Herman, G. T., Eggermont, P. P. B., Frank, J. & Carazo, J.-M. (2006). Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 2729.CrossRefGoogle ScholarPubMed
Schwem, B. E. & Fillingame, R. H. (2006). Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. Journal of Biological Chemistry 281, 3786137867.CrossRefGoogle ScholarPubMed
Seelert, H., Poetsch, A., Dencher, N. A., Engel, A., Stahlberg, H. & Müller, D. J. (2000). Structural biology: proton-powered turbine of a plant motor. Nature 405, 418419.CrossRefGoogle ScholarPubMed
Sennoune, S. & Martinez-Zaguilan, R. (2007). Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer. Journal of Bioenergetics and Biomembranes 39, 427433.CrossRefGoogle ScholarPubMed
Sennoune, S. R., Bakunts, K., Martinez, G. M., Chua-Tuan, J. L., Kebir, Y., Attaya, M. N. & Martinez-Zaguilan, R. (2004). Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology. Cell Physiology 286, C1443C1452.CrossRefGoogle ScholarPubMed
Shao, E. & Forgac, M. (2004). Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. Journal of Biological Chemistry 279, 4866348670.CrossRefGoogle ScholarPubMed
Shao, E., Nishi, T., Kawasaki-Nishi, S. & Forgac, M. (2003). Mutational analysis of the non-homologous region of subunit A of the yeast V-ATPase. Journal of Biological Chemistry 278, 1298512991.CrossRefGoogle ScholarPubMed
Sielaff, H., Rennekamp, H., Engelbrecht, S. & Junge, W. (2008a). Functional halt positions of rotary F0F1-ATPase correlated with crystal structures. Biophysical Journal 95, 49794987.CrossRefGoogle ScholarPubMed
Sielaff, H., Rennekamp, H., Wächter, A., Xie, H., Hilbers, F., Feldbauer, K., Dunn, S. D., Engelbrecht, S. & Junge, W. (2008b). Domain compliance and elastic power transmission in rotary F0F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 105, 1776017765.CrossRefGoogle Scholar
Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., Belova, G. I., Aravind, L., Natale, D. A., Rogozin, I. B., Tatusov, R. L., Wolf, Y. I., Stetter, K. O., Malykh, A., Koonin, E. V. & Kozyavkin, S. A. (2002). The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proceedings of the National Academy of Sciences of the United States of America 99, 46444649.CrossRefGoogle ScholarPubMed
Smith, A. N., Skaug, J., Choate, K. A., Nayir, A., Bakkaloglu, A., Ozen, S., Hulton, S. A., Sanjad, S. A., Al-Sabban, E. A., Lifton, R. P., Scherer, S. W. & Karet, F. E. (2000). Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nature Genetics 26, 7175.CrossRefGoogle ScholarPubMed
Sorgen, P. L., Bubb, M. R. & Cain, B. D. (1999). Lengthening the second stalk of F1F0 ATP synthase in Escherichia coli. Journal of Biological Chemistry 274, 3626136266.CrossRefGoogle Scholar
Sorgen, P. L., Caviston, T. L., Perry, R. C. & Cain, B. D. (1998). Deletions in the second stalk of F1F0-ATP synthase in Escherichia coli. Journal of Biological Chemistry 273, 2787327878.CrossRefGoogle ScholarPubMed
Soubannier, V., Vaillier, J., Paumard, P., Coulary, B., Schaeffer, J. & Velours, J. (2002). In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. Journal of Biological Chemistry 277, 1073910745.CrossRefGoogle ScholarPubMed
Speelmans, G., Poolman, B., Abee, T. & Konings, W. N. (1993). Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proceedings of the National Academy of Sciences of the United States of America 90, 79757979.CrossRefGoogle ScholarPubMed
Steigmiller, S., Turina, P. & Gräber, P. (2008). The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 105, 37453750.CrossRefGoogle ScholarPubMed
Stock, D., Leslie, A. G. W. & Walker, J. E. (1999). Molecular architecture of the rotary motor in ATP synthase. Science 286, 17001705.CrossRefGoogle ScholarPubMed
Strauss, M., Hofhaus, G., Schröder, R. R. & Kühlbrandt, W. (2008). Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO Journal 27, 11541160.CrossRefGoogle ScholarPubMed
Stuart, R. (2008). Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. Journal of Bioenergetics and Biomembranes 40, 411417.CrossRefGoogle ScholarPubMed
Su, Y., Zhou, A., Al Lamki, R. S. & Karet, F. E. (2003). The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. Journal of Biological Chemistry 278, 2001320018.CrossRefGoogle ScholarPubMed
Sumi, M., Sato, M. H., Denda, K., Date, T. & Yoshida, M. (1992). A DNA fragment homologous to F1-ATPase β subunit was amplified from genomic DNA of Methanosarcina barkeri. Indication of an archaebacterial F-type ATPase. FEBS Letters 314, 207210.CrossRefGoogle ScholarPubMed
Sumner, J. P., Dow, J. A., Earley, F. G., Klein, U., Jager, D. & Wieczorek, H. (1995). Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. Journal of Biological Chemistry 270, 56495653.CrossRefGoogle ScholarPubMed
Sun, S., Chandler, D., Dinner, A. R. & Oster, G. (2003). Elastic energy storage in beta-sheets with application to F-1-ATPase. European Biophysics Journal 32, 676683.CrossRefGoogle Scholar
Supek, F., Supekova, L., Mandiyan, S., Pan, Y. C., Nelson, H. & Nelson, N. (1994). A novel accessory subunit for vacuolar H(+)-ATPase from chromaffin granules. Journal of Biological Chemistry 269, 2410224106.CrossRefGoogle ScholarPubMed
Supekova, L., Sbia, M., Supek, F., Ma, Y. M. & Nelson, N. (1996). A novel subunit of vacuolar H+-ATPase related to the b-subunit of F-ATPases. Journal of Experimental Biology 199, 11471156.CrossRefGoogle Scholar
Svergun, D. I., Konrad, S., Huss, M., Koch, M. H. J., Wieczorek, H., Altendorf, K., Volkov, V. V. & Grüber, G. (1998). Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry 37, 1765917663.CrossRefGoogle ScholarPubMed
Takase, K., Yamato, I. & Kakinuma, Y. (1993). Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell. Journal of Biological Chemistry 268, 1161011616.CrossRefGoogle Scholar
Takeyasu, K., Omote, H., Nettikadan, S., Tokumasu, F., Iwamoto-Kihara, A. & Futai, M. (1996). Molecular imaging of Escherichia coli F0F1-ATPase in reconstituted membranes using atomic force microscopy. FEBS Letters 392, 110113.CrossRefGoogle ScholarPubMed
Thaker, Y., Roessle, M., & Grüber, G. (2007). The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. Journal of Bioenergetics and Biomembranes 39, 275289.CrossRefGoogle ScholarPubMed
Toei, M., Gerle, C., Nakano, M., Tani, K., Gyobu, N., Tamakoshi, M., Sone, N., Yoshida, M., Fujiyoshi, Y., Mitsuoka, K. & Yokoyama, K. (2007). Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proceedings of the National Academy of Sciences of the United States of America 104, 2025620261.CrossRefGoogle ScholarPubMed
Toei, M., Saum, R. & Forgac, M. (2010). Regulation and isoform function of the V-ATPases. Biochemistry 49, 47154723.CrossRefGoogle ScholarPubMed
Tomashek, J. J. & Brusilow, W. S. A. (2000). Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. Journal of Bioenergetics and Biomembranes 32, 493500.CrossRefGoogle Scholar
Tsunoda, S. P., Rodgers, A. J. W., Aggeler, R., Wilce, M. C. J., Yoshida, M. & Capaldi, R. A. (2001). Large conformational changes of the ε subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proceedings of the National Academy of Sciences of the United States of America 98, 65606564.CrossRefGoogle ScholarPubMed
Ueno, H., Suzuki, T., Kinosita, K. & Yoshida, M. (2005). ATP-driven stepwise rotation of F0F1-ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 102, 13331338.CrossRefGoogle Scholar
Uhlin, U., Cox, G. B. & Guss, J. M. (1997). Crystal structure of the ε subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5, 12191230.CrossRefGoogle ScholarPubMed
Väänänen, H. K., Zhao, H., Mulari, M. & Halleen, J. M. (2000). The cell biology of osteoclast function. Journal of Cell Science 113, 377381.CrossRefGoogle ScholarPubMed
Valiyaveetil, F. I. & Fillingame, R. H. (1997). On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. Journal of Biological Chemistry 272, 3263532641.CrossRefGoogle ScholarPubMed
Venzke, D., Domgall, I., Kocher, T., Féthière, J., Fischer, S. & Böttcher, B. (2005). Elucidation of the stator organization in the V-ATPase of Neurospora crassa. Journal of Molecular Biology 349, 659669.CrossRefGoogle ScholarPubMed
Vik, S. B. & Antonio, B. J. (1994). A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. Journal of Biological Chemistry 269, 3036430369.CrossRefGoogle ScholarPubMed
Vik, S. B., Long, J. C., Wada, T. & Zhang, D. (2000). A model for the structure of subunit a of the Escherichia coli ATP synthase and its role in proton translocation. Biochimica et Biophysica Acta 1458, 457466.CrossRefGoogle Scholar
Vik, S. B., Patterson, A. R. & Antonio, B. J. (1998). Insertion scanning mutagenesis of subunit a of the F1F0 ATP synthase near His245 and implications on gating of the proton channel. Journal of Biological Chemistry 273, 1622916234.CrossRefGoogle ScholarPubMed
Vinothkumar, K. R. & Henderson, R. (2010). Structures of membrane proteins. Quarterly Review of Biophysics 43, 65158.CrossRefGoogle ScholarPubMed
Vollmar, M., Schlieper, D., Winn, M., Büchner, C. & Groth, G. (2009). Structure of the c(14) rotor ring of the proton translocating chloroplast ATP synthase. Journal of Biological Chemistry 284, 1822818235.CrossRefGoogle Scholar
Von Ballmoos, C., Brunner, J. & Dimroth, P. (2004). The ion channel of F-ATP synthase is the target of toxic organotin compounds. Proceedings of the National Academy of Sciences of the United States of America 101, 1123911244.CrossRefGoogle ScholarPubMed
Von Ballmoos, C., Cook, G. M. & Dimroth, P. (2008). Unique rotary ATP synthase and its biological diversity. Annual Review of Biophysics 37, 4364.CrossRefGoogle ScholarPubMed
Von Ballmoos, C., Wiedenmann, A. & Dimroth, P. (2009). Essentials for ATP synthesis by F1F0 ATP synthases. Annual Review of Biochemistry 78, 649672.CrossRefGoogle ScholarPubMed
Vonck, J., Pisa, K. Y., Morgner, N., Brutschy, B. & Müller, V. (2009). Three-dimensional structure of A1A0ATP synthase from the hyperthermophilic archeon Pyrococcus furiosus by electron microscopy. Journal of Biological Chemistry 284, 1011010119.CrossRefGoogle Scholar
Voss, M., Vitavska, O., Walz, B., Wieczorek, H. & Baumann, O. (2007). Stimulus-induced phosphorylation of vacuolar H+-ATPase by protein kinase A. Journal of Biological Chemistry 282, 3373533742.CrossRefGoogle ScholarPubMed
Wagner, C. A., Finberg, K. E., Breton, S., Marshansky, V., Brown, D. & Geibel, J. P. (2004). Renal vacuolar H+-ATPase. Physiological Reviews 84, 12631314.CrossRefGoogle ScholarPubMed
Wang, Y., Cipriano, D. J. & Forgac, M. (2007). Arrangement of subunits in the proteolipid ring of the V-ATPase. Journal of Biological Chemistry 282, 3405834065.CrossRefGoogle ScholarPubMed
Wang, Y., Inoue, T. & Forgac, M. (2005). Subunit a of the yeast V-ATPase participates in binding of bafilomycin. Journal of Biological Chemistry 280, 4048140488.CrossRefGoogle ScholarPubMed
Wang, Y., Toei, M. & Forgac, M. (2008). Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification. Journal of Biological Chemistry 283, 2069620702.CrossRefGoogle ScholarPubMed
Watts, S. D., Zhang, Y., Fillingame, R. H. & Capaldi, R. A. (1995). The γ subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part. FEBS Letters 368, 235238.CrossRefGoogle Scholar
Weber, J., Wilke-Mounts, S., Nadanaciva, S. & Senior, A. E. (2004). Quantitative determination of direct binding of b subunit to F1 in Escherichia coli F1F0-ATP synthase. Journal of Biological Chemistry 279, 1125311258.CrossRefGoogle ScholarPubMed
White, H. D., Thirumurugan, K., Walker, M. L. & Trinick, J. (2003). A second generation apparatus for time resolved electron cryo-microscopy using stepper motors and electrospray. Journal of Structural Biology 144, 246252.CrossRefGoogle Scholar
Whyteside, G., Meek, P. J., Ball, S. K., Dixon, N., Finbow, M. E., Kee, T. P., Findlay, J. B. C. & Harrison, M. A. (2005). Concanamycin and indolyl pentadieneamide inhibitors of the vacuolar H+-ATPase bind with high affinity to the purified proteolipid subunit of the membrane domain. Biochemistry 44, 1502415031.CrossRefGoogle Scholar
Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J. & Harvey, W. R. (1999). Animal plasma membrane energization by proton-motive V-ATPases. BioEssays 21, 637648.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Wieczorek, H., Putzenlechner, M., Zeiske, W. & Klein, U. (1991). A vacuolar-type proton pump energizes K+/H+-antiport in an animal plasma membrane. Journal of Biological Chemistry 266, 1534015347.CrossRefGoogle Scholar
Wilkens, S. & Capaldi, R. (1998). Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase. Biochimica et Biophysica Acta 1365, 9397.CrossRefGoogle ScholarPubMed
Wilkens, S. & Capaldi, R. A. (1994). Asymmetry and structural-changes in EcF(1) examined by cryoelectronmicroscopy. Biological Chemistry Hoppe-Seyler 375, 4351.Google Scholar
Wilkens, S. & Forgac, M. (2001). Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. Journal of Biological Chemistry 276, 4406444068.CrossRefGoogle ScholarPubMed
Wilkens, S., Inoue, T. & Forgac, M. (2004). Three-dimensional structure of the vacuolar ATPase: localization of subunit H by difference imaging and chemical cross-linking. Journal of Biological Chemistry 279, 4194241949.CrossRefGoogle Scholar
Wilkens, S., Vasilyeva, E. & Forgac, M. (1999). Structure of the vacuolar ATPase by electron microscopy. Journal of Biological Chemistry 274, 3180431810.CrossRefGoogle ScholarPubMed
Wolgemuth, C. W. & Sun, S. X. (2006). Elasticity of α-helical coiled coils. Physical Review Letters 97, 248101.CrossRefGoogle ScholarPubMed
Xu, T., Vasilyeva, E. & Forgac, M. (1999). Subunit interactions in the clathrin-coated vesicle vacuolar (H+)- ATPase complex. Journal of Biological Chemistry 274, 2890928915.CrossRefGoogle ScholarPubMed
Yagi, H., Kajiwara, N., Tanaka, H., Tsukihara, T., Kato-Yamada, Y., Yoshida, M. & Akutsu, H. (2007). Structures of the thermophilic F1-ATPase ∊ subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Proceedings of the National Academy of Sciences of the United States of America 104, 1123311238.CrossRefGoogle ScholarPubMed
Yamamoto, M., Unzai, S., Saijo, S., Ito, K., Mizutani, K., Suno-Ikeda, C., Yabuki-Miyata, Y., Terada, T., Toyama, M., Shirouzu, M., Kobayashi, T., Kakinuma, Y., Yamato, I., Yokoyama, S., Iwata, S. & Murata, T. (2008). Interaction and stoichiometry of the peripheral stalk subunits NtpE and NtpF and the N-terminal hydrophilic domain of NtpI of Enterococcus hirae V-ATPase. Journal of Biological Chemistry 283, 1942219431.CrossRefGoogle ScholarPubMed
Yang, W., Gao, Y. Q., Cui, Q., Ma, J. & Karplus, M. (2003). The missing link between thermodynamics and structure in F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 100, 874879.CrossRefGoogle ScholarPubMed
Yasuda, R., Masaike, T., Adachi, K., Noji, H., Itoh, H. & Kinosita, K. Jr. (2003). The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America 100, 93149318.CrossRefGoogle ScholarPubMed
Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. (2001). Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898904.CrossRefGoogle ScholarPubMed
Yokoyama, K., Akabane, Y., Ishii, N. & Yoshida, M. (1994). Isolation of prokaryotic V0V1-ATPase from a thermophilic eubacterium Thermus thermophilus. Journal of Biological Chemistry 269, 1224812253.CrossRefGoogle ScholarPubMed
Yokoyama, K., Nagata, K., Imamura, H., Ohkuma, S., Yoshida, M. & Tamakoshi, M. (2003a). Subunit arrangement in V-ATPase from Thermus thermophilus. Journal of Biological Chemistry 278, 4268642691.CrossRefGoogle ScholarPubMed
Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M. & Tamakoshi, M. (2003b). Rotation of the proteolipid ring in the V-ATPase. Journal of Biological Chemistry 278, 24255.CrossRefGoogle ScholarPubMed
Yoshida, M., Muneyuki, E. & Hisabori, T. (2001). ATP synthase- a marvellous rotary engine of the cell. Nature Reviews Molecular and Cellular Biology 2, 669677.CrossRefGoogle ScholarPubMed
Zhang, J., Myers, M. & Forgac, M. (1992). Characterization of the V0 domain of the coated vesicle (H+)- ATPase. Journal of Biological Chemistry 267, 97739778.CrossRefGoogle ScholarPubMed
Zhang, J. W., Parra, K. J., Liu, J. & Kane, P. M. (1998). Characterization of a temperature-sensitive yeast vacuolar ATPase mutant with defects in actin distribution and bud morphology. Journal of Biological Chemistry 273, 1847018480.CrossRefGoogle ScholarPubMed
Zhang, Z., Charsky, C., Kane, P. M. & Wilkens, S. (2003). Yeast V1-ATPase: affinity purification and structural features by electron microscopy. Journal of Biological Chemistry 278, 4729947306.CrossRefGoogle ScholarPubMed
Zhang, Z., Zheng, Y., Mazon, H., Milgrom, E., Kitagawa, N., Kish-Trier, E., Heck, A. J. R., Kane, P. M. & Wilkens, S. (2008). Structure of the yeast vacuolar ATPase. Journal of Biological Chemistry 283, 3598335995.CrossRefGoogle ScholarPubMed
Zimmermann, B., Diez, M., Zarrabi, N., Gräber, P. & Börsch, M. (2005). Movements of the e-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO Journal 24, 20532063.CrossRefGoogle Scholar