Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T21:22:43.304Z Has data issue: false hasContentIssue false

The physical principles of energy transduction in chloroplast thylakoid membranes

Published online by Cambridge University Press:  17 March 2009

S. W. Thorne
Affiliation:
CSIRO Division of Plant Industry, P. O. Box 1600, Canberra City, A. C. T. 2601, Australia
J. T. Duniec
Affiliation:
CSIRO Division of Plant Industry, P. O. Box 1600, Canberra City, A. C. T. 2601, Australia

Extract

Photosynthesis in green plants or algae may be represented by an overall equation:

The energy necessary to promote this overall reaction is derived from light through absorption by pigment molecules — chiefly the chlorophylls.

Photosynthesis occurs in chloroplasts - subcellular organelles in which all the chlorophyll pigments are located. The chloroplasts comprise membranous, structures, and can be classified into two types. To the first type belong chloroplasts with appressed stacks of lamellar membranes, termed grana. These chloroplasts occur in mesophyll cells (C3 plants). The second type of chloroplasts are those with lamellar membranes that do not form the grana structures; they occur in bundle sheath cells of maize and other monocotyledons (C4plants, Hatch & Slack, 1970). In algae a greater diversity of structure occurs (Kirk & Tilney-Basset, 1978). Fluorescence microscopy indicates that chlorophyll molecules are localized mainly in the grana membrane regions of mesophyll-type chloroplasts and uniformly throughout the bundle sheath cells (Spencer & Wildman, 1962). Mesophyll chloroplasts are flattened saucer-shaped organelles (20 or more in each cell) of between 5000 and 10000 nm in diameter, and of thickness 1000–2000 nm, whilst the individual grana are each of the order of 300–500 nm in diameter. The available evidence suggests that individual lamellar membranes are arranged to form vesicles, or sacks where the internal space is completely delimited from the external space. These individual closed membrane structures were termed thylakoids (Menke, 1962).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(VII) REFERENCES

Åkerlund, H. E., Andersson, B., & Albertsson, P. A. (1976). Isolation of photosystem II enriched membrane vesicles from spinach chloro-plasts by phase partition. Biochim. biophys. Acta 449, 525535.CrossRefGoogle Scholar
Åkerlund, H. E., Andersson, B., Persson, A. & Albertsson, P. A. (1979). Isoelectric points of inner and outer thylakoid membrane surfaces as determined by cross-partition. Biochim. biophys. Acta 552, 238246.CrossRefGoogle Scholar
Akoyunoglu, G. & Argyroudi-Akoyunoglu, J. (1974). Reconstitution of grana thylakoids in spinach chloroplasts. FEES Lett. 42, 135140.CrossRefGoogle Scholar
Albertsson, P. A. (1971). Partition of Cell Particles and Macromolecules, 2nd ed.New York: Wiley.Google Scholar
Allen, C. F., Good, P., Trosper, T. & Park, R. B. (1972). Chlorophyll, glycerolipid and protein ratios in spinach chloroplast grana and stroma lamellae. Biochem. biophys. Res. Commun. 48, 907913.CrossRefGoogle ScholarPubMed
Anderson, J. M. & Boardman, N. K. (1966). Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim. biophys. Acta 112, 403421.CrossRefGoogle ScholarPubMed
Anderson, J. M. & Vernon, L. P. (1967). Digitonin incubation of spinach chloroplasts in TRIS (hydroxymethyl) methylglycine solutions of varying ionic strength. Biochim. biophys. Acta 143, 363376.CrossRefGoogle Scholar
Anderson, J. M. (1975). The molecular organisation of chloroplast thylakoids. Biochim. biophys. Acta 416, 191235.CrossRefGoogle ScholarPubMed
Anderson, J. M., Waldron, J. C. & Thorne, S. W. (1978). Chlorophyll-protein complexes of spinach and barley thylakoids. FEBS Lett. 92, 227233.CrossRefGoogle Scholar
Anderson, J. M. (1981). Consequences of spatial separation of photosys-tems i and 2 in thylakoid membranes of higher plant chloroplasts. FEBS Lett. 124, 110.CrossRefGoogle Scholar
Anderson, J. M., Barrett, J. & Thorne, S. W. (1981). Chlorophyll-protein complexes of photosynthetic eukaryotes and prokaryotes: properties of functional organisation. 5th Int. Cong. Photosynth., vol. 111 (Ed. G. Akoyunoglu), pp. 301315.Google Scholar
Anderson, J. M. (1982 a). The role of chlorophyll-protein complexes in the function and structure of chloroplast thylakoids. Mol. & Cell. Biochem. 46, 161172.CrossRefGoogle ScholarPubMed
Anderson, J. M. (1982 b). Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma exposed thylakoid regions. FEBS Lett. 138, 6266.CrossRefGoogle Scholar
Andersson, B. & Åkerlund, H. E. (1978). Inside out membrane vesicles isolated from spinach thylakoids. Biochim. biophys. Acta, 503, 462472.CrossRefGoogle ScholarPubMed
Andersson, B. & Anderson, J. M. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. biophys. Acta 593, 427440.CrossRefGoogle ScholarPubMed
Argyroudi-Akoyunoglu, J. (1976). Effect of cations on the reconstitution of heavy subchloroplast fractions (grana) in disorganised low-salt agranal chloroplasts. Archs Biochem. Biophys. 176, 267274.CrossRefGoogle Scholar
Arnon, D. I. (1951). Extracellular photosynthetic reactions. Nature, Land. 167, 10081010.CrossRefGoogle ScholarPubMed
Arnon, D. I., Allen, M. B. & Whatley, F. R. (1954). Photosynthesis by isolated chloroplasts. Nature, Lond. 174, 394396.CrossRefGoogle ScholarPubMed
Arnon, D. I., Losada, M., Whatley, F. R., Tsujimoto, H. Y., Hall, D. O. & Horton, A. A. (1961). Photosynthetic phosphorylation and molecular oxygen. Proc. natn. Acad. Sci. U.S.A. 47, 13141334.CrossRefGoogle ScholarPubMed
Arntzen, S. J. (1978). Dynamic structural features of chloroplast lamellae. Curr. Top. Bioenerg. 8, 111160.Google Scholar
Aro, E.-M., & Karunen, P. (1979). Effects of changed environment conditions on glycolipids of the mosses Pleurozium schreberi and Ceratodon purpureus. Physiologia Pl. 45, 201206.CrossRefGoogle Scholar
Barash, Yu. S., & Ginzburg, V. L. (1975). Electromagnetic fluctuations in matter and molecular (van der Waals) forces between them. Soviet Phys. Usp. 18, 305321.CrossRefGoogle Scholar
Barber, J., Mills, J. & Love, A. (1977). Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 74, 174181.CrossRefGoogle ScholarPubMed
Barber, J. & Searle, G. F. W. (1979). Double layer theory and the effect of pH on cation-induced increase in chlorophyll fluorescence yield and the effect of electrical charge. FEBS Lett. 103, 241245.CrossRefGoogle Scholar
Barber, J., Chow, W. S., Scoufflaire, C. & Lannoye, R. (1980). The relationship between thylakoid stacking and salt induced chlorophyll fluorescence changes. Biochim. biophys. Acta 591, 92103.CrossRefGoogle ScholarPubMed
Barber, J. (1980). An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett. 118, 110.CrossRefGoogle Scholar
Barlow, C. A. Jr (1970). The electrical double layer. In Physical Chemistry: IXA, Electrochemistry (Ed. Eyring, H.), pp. 167244. New York: Academic Press.Google Scholar
Barrett, J. & Thorne, S. W. (1981). Isolation of a F694 chlorophyll o-protein complex with low fluorescence yield and a Chi c2-protein and a fucoxanthin-protein from brown algae. In Photosynthesis III. Structure and Molecular Organisation of the Photosynthetic Apparatus (ed. Akoyunoglou, G.), pp. 347356. Proc. 5th Int. Congr. Photosynthesis, Greece 1980. Philadelphia: Balaban.Google Scholar
Bassham, J. A. & Calvin, M. (1957). The Path of Carbon in Photosynthesis. Englewood Cliffs, N. J.: Prentice Hall.Google Scholar
Bellus, D. (1979). Physical quenchers of singlet molecular oxygen. Adv. Photochem. 11, 105205.CrossRefGoogle Scholar
Benson, A. A. (1971). Lipids of chloroplasts. In Structure and Function of Chloroplasts (ed. Gibbs, M.), pp. 129148. Berlin, Springer.CrossRefGoogle Scholar
Bjorkman, O., Boardman, N. K., Anderson, J. M., Thorne, S. W., Goodchild, D. J. & Pylotis, N. A. (1972). Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Yb. Carnegie Instn Wash. 71, 115135.Google Scholar
Blinks, L. R. (1959). Chromatic transients in the photosynthesis of a green alga. Pl. Physiol. 32, 200203.CrossRefGoogle Scholar
Boardman, N. K. (1962). Studies on a protochlorophyll-protein complex. I. Purification and molecular weight determination. Biochim. biophys. Acta 62, 6379.CrossRefGoogle ScholarPubMed
Boardman, N. K. & Anderson, J. M. (1964). Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. Nature, Land. 203, 166167.CrossRefGoogle Scholar
Boardman, N. K., Thorne, S. W. & Anderson, J. M. (1966). Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc. natn. Acad. Sci. U.S.A. 56, 586593.CrossRefGoogle ScholarPubMed
Boardman, N. K., Anderson, J. M., Thorne, S. W. & Bjørkman, O. (1972). Photochemical reactions of chloroplasts and components of the photosynthetic electron transport chain in two rainforest species. Yb. Carnegie Instn Wash. 71, 107114.Google Scholar
Boardman, N. K., Bjørkman, O., Anderson, J. M., Goodchild, D. J. & Thorne, S. W. (1974). Photosynthetic adaptation of higher plants to light intensity: Relationship between chloroplast structure, composition of the photosystems and photosynthetic rates. Proc. 3rd Int. Cong. Photosynth., Israel, pp. 18091827. Elsevier.Google Scholar
Boardman, N. K. & Thorne, S. W. (1977). Effect of a low concentration of glutaraldehyde on proton uptake, phosphorylation and fluorescence quenching in chloroplasts. Photosynthetic organelles. Pl. Cell Physiol., Tokyo, Special Issue, pp. 157163.Google Scholar
Boardman, N. K., Anderson, J. M. & Goodchild, D. J. (1978). Chlorophyll—protein complexes and structure of mature and developing chloroplasts. Current Top. Bioenerg. 8, 35109.Google Scholar
Bogorad, L. (1966). The biosynthesis of chlorophylls. The Chlorophylls (ed. Vernon, L. P. & Seely, G. R.), pp. 481510. New York: Academic Press.CrossRefGoogle Scholar
Bolton, P., Wharfe, J. & Harwood, J. L. (1978). The lipid composition of a barley mutant lacking chlorophyll b. Biochem. J. 174, 6772.CrossRefGoogle ScholarPubMed
Bonaventura, C. J. & Myers, J. (1969). Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. biophys. Acta 189, 366383.CrossRefGoogle ScholarPubMed
Brain, R. D., Freeberg, J. A., Weiss, C. V. & Briggs, W. R. (1977). Blue light induced absorbance changes in membrane fractions from corn and Neurospora. Pl. Physiol. 59, 948952.CrossRefGoogle ScholarPubMed
Branton, D., Bullivant, S., Gilula, N. B., Karnovsky, M. J., Moor, H., Muhlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehlin, L. A., Steere, R. L. & Weinstein, R. S. (19 ). Freeze-etching nomenclature. Science, N. Y. 190, 5456.CrossRefGoogle Scholar
Brody, S. S. (1957). Instrument to measure fluorescence lifetimes in the millimicrosecond region. Rev. Scient. Instrum. 28, 10211026.CrossRefGoogle Scholar
Burke, J. J., Ditto, C. L. & Arntzen, C. J. (1978). Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Arch. Biochem. Biophys. 187, 252263.CrossRefGoogle ScholarPubMed
Butler, W. L. & Strasser, R. J. (1977). Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc. natn. Acad. Sci. U.S.A. 74, 33823385.CrossRefGoogle ScholarPubMed
Cartling, B. & Ehrenberg, A. (1978). A molecular mechanism of the energetic coupling of the sequence of electron transfer reactions to endergonic reactions. Biophys. J. 23, 451461.CrossRefGoogle ScholarPubMed
Chain, R. K. & Arnon, D. I. (1977). Quantum efficiency of photosynthetic energy conversion. Proc. natn. Acad. Sci. U.S.A. 74, 33773381.CrossRefGoogle ScholarPubMed
Cherry, R. J. (1976). Protein and lipid mobility in biological and model membranes. In Biological Membranes (ed. D. Chapman and D. F. H. Wallach), pp. 47102.Google Scholar
Chow, W. S., Thorne, S. W., Duniec, J. T., Sculley, M. J. & Boardman, N. K. (1980). The stacking of chloroplast thylakoids: Effects of cation screening and binding studied by the digitonin method. Archs Biochem. Biophys. 201, 347355.CrossRefGoogle ScholarPubMed
Chow, W. S. (1976). Ph. D. thesis, Flinders University, Adelaide, Australia.Google Scholar
Chow, W. S., Thorne, S. W., Duniec, J. T., Sculley, M. J. & Boardman, N. K. (1982). The stacking of chloroplast thylakoids: Evidence for segregation of charged groups into non-stacked regions. Archs Biochem. Biophys. 216, 247254.CrossRefGoogle Scholar
Cowley, A. C., Fuller, N. L., Rand, A. P. & Parsegian, V. A. (1978). Measurement of repulsive forces between charged phospholipids bilayers. Biochemistry 17, 31633168.CrossRefGoogle Scholar
Cox, R. P. & Bendall, D. S. (1974). The functions of plastiquinone and b-carotine in photosystem II of chloroplasts. Biochim. biophys. Acta 347, 4959.CrossRefGoogle Scholar
Cox, R. P. & Andersson, B. (1981). Lateral and transverse organization of cytochromes in the chloroplast thylakoid membrane. Biochem. Biophys. Res. Commun. 103, 13361342.CrossRefGoogle ScholarPubMed
Cox, R. P. & Olsen, L. F. (1982). The organisation of the electron transport chain in the thylakoid membrane. In Electron Transport and Phosphorylation (ed. Barber, J.), pp. 5079. Amsterdam: Elsevier Biomedical.Google Scholar
Cramer, W. A. & Crofts, A. R. (1982). Electron and proton transport. In Photosynthesis, vol. 1 (ed. Govindjee, ), pp. 387467. New York: Academic Press.CrossRefGoogle Scholar
Crofts, A. R., Deamer, D. W. & Packer, L. (1967). Mechanism of light-induced structural change in chloroplasts. II. The role of ion movements in volume changes. Biochim. biophys. Acta 131, 97118.CrossRefGoogle Scholar
Davson, H. & Danielli, J. F. (1952). The Permeability of Natural Membranes, 2nd ed.Cambridge University Press.Google Scholar
Dilley, R. A. & Vernon, L. P. (1965). Ion and Water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch. Biochem. Biophys. 111, 365375.CrossRefGoogle Scholar
Douce, R., Holtz, R. B. & Benson, A. A. (1973). Isolation and properties of the envelope of spinach chloroplasts. J. biol. Chem. 248, 72157222.CrossRefGoogle ScholarPubMed
Duniec, J. T. & Thorne, S. W. (1977). The relation of light induced slow absorbancy changes about 520 nm and structure of chloroplast thylakoids - a theoretical investigation. J. Bioenerg. Biomembranes 9, 223235.CrossRefGoogle ScholarPubMed
Duniec, J. T., Sculley, M. J. & Thorne, S. W. (1979). An analysis of the effect of mono- and di-valent cations on the forces between charged lipid membranes with special reference to the grana thylakoids of chloroplasts. J. theor. Biol. 79, 473484.CrossRefGoogle Scholar
Duniec, J. T. & Thorne, S. W. (1979). An explanation of the proton uptake of chloroplast membranes in terms of asymmetry of the surface charges. FEES Lett. 105, 14.CrossRefGoogle ScholarPubMed
Duniec, J. T. & Thorne, S. W. (1980). A theory of charge separation, ion, electron and proton transport in photosynthetic membranes based on asymmetry of surface charges. J. theor. Biol. 85, 691711.CrossRefGoogle Scholar
Duniec, J. T. & Thorne, S. W. (1981). Effects of discrete charges and dielectric properties of membrane-water interface on electric potentials inside the membranes. FEES Lett. 126, 14.CrossRefGoogle Scholar
Duniec, J. T., Israelachvili, J. N., Ninham, B. W., Pashley, R. M. & Thorne, S. W. (1981). An ion-exchange model for thylakoid stacking in chloroplasts. FEES Lett. 129, 193196.CrossRefGoogle Scholar
Duniec, J. T. & Thorne, S. W. (1983). Electrostatic potentials in membrane systems. Bull. Math. Biol. 45, 6990.CrossRefGoogle ScholarPubMed
Duysens, L. N. M., Amesz, J. & Kamp, B. M. (1961). Two photochemical systems in photosynthesis. Nature, Land. 190, 510511.CrossRefGoogle ScholarPubMed
Egneus, H., Heber, U. W., Mathieson, U. & Kirk, M. (1975). Reduction of oxygen by the electron transport chain of chloroplasts during the assimilation of carbon dioxide. Biochim. biophys. Acta 408, 252268.CrossRefGoogle ScholarPubMed
Ehleringer, J. & Bjorkman, O. (1977). Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentration. Pl. Physiol. 59, 8690.CrossRefGoogle Scholar
Emerson, R., Chalmers, R. & Cederstrand, C. (1957). Some factors influencing the long-wave limit of photosynthesis. Proc. natn. Acad. Sci. U.S.A. 43, 133143.CrossRefGoogle ScholarPubMed
Foote, C. S. & Denny, R. W. (1968). Chemistry of singlet oxygen. VII. Quenching by 6-carotene. J. Am. Chem. Soc. 90, 62336234.CrossRefGoogle Scholar
Foote, C. S., Chang, Y. C. & Denny, R. W. (1970). Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. chem. Soc. 92, 52165218.CrossRefGoogle ScholarPubMed
Forster, Th. (1951). In Fluorescenz organischer Verbindungen. Göttingen: Vanderhoek and Rupprecht.Google Scholar
Forster, Th. (1959). Transfer mechanism of electronic excitation. Discuss. Faraday. Soc. 27, 717.CrossRefGoogle Scholar
Forster, Th. (1965). Delocalised excitation and excitation transfer. In Modern Quantum Chemistry, Part III, Action of Light and Organic Crystals (Ed. Sinanoglou, O.), pp. 93137. New York: Academic.Google Scholar
Friesner, R. & Wartheimer, R. (1982). Model for primary charge separation in reaction centres of photosynthetic bacteria. Proc. natn. Acad. Sci. U.S.A. 79, 55645568.CrossRefGoogle ScholarPubMed
Frye, L. D. & Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse—human heterokaryons. J. Cell Sci. 7, 319335.CrossRefGoogle ScholarPubMed
Fuad, N., Day, D. A., Ryrie, I. J. & Thorne, S. W. (1983). Aphotosystem II light-harvesting chlorophyll-protein complex with a high fluorescence emission at 736 nm. Photobiochem. Photobiophys. 5, 255262.Google Scholar
Gerola, P. D., Jennings, R. C., Forti, G. & Garlaschi, F. M. (1979). Influence of protons on thylakoid membrane stacking. Plant Sci. Lett. 16, 249254.CrossRefGoogle Scholar
Gilbarg, D. & Trudinger, N. S. (1977). Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Govindjee, R., Rabinowitch, E. & Govindjee, (1968). Maximum quantum yield and action spectrum of photosynthesis and fluorescence in Chlorella. Biochim. biophys. Acta 162, 530544.Google ScholarPubMed
Griffiths, M., Sistrom, W. R., Cohen-Bazire, G. & Stanier, R. Y. (1955). Function of carotenoids in photosynthesis. Nature, Land. 176, 12111214.CrossRefGoogle ScholarPubMed
Gross, E. L. & Prasher, S. H. (1974). Correlation between monovalent cation-induced decreases in chlorophyll a fluorescence and chloroplast structural changes. Archs Biochem. Biophys. 164, 460468.CrossRefGoogle ScholarPubMed
Gunning, B. E. S. & Jagoe, M. P. (1967). In The Biochemistry of Chloroplasts, vol. 2 (ed. Goodwin, T. W.), pp. 665676. New York: Academic Press.Google Scholar
Gunning, B. E. S. & Steer, M. (1975). In Infrastructure and Biology of Plant Cells. London: Arnold.Google Scholar
Hall, D. & Sculley, M. J. (1977). Calculation of the electrochemical contribution to the interaction between charged plates. J. Chem. Soc., Faraday Trans. II 73, 860876.Google Scholar
Haraux, F. & De Kouchkovsky, Y. (1979). Quantitative estimation of the photosynthetic proton binding inside the thylakoids by correlating internal acidification to external alkalinisation and to oxygen evolution in chloroplasts. Biochim. biophys. Acta 546, 455471.CrossRefGoogle ScholarPubMed
Harris, F. E. & O'Konski, C. T. (1957). Dielectric properties of aqueous ionic solutions at microwave frequencies. J. Phys. Chem. 61, 310319.CrossRefGoogle Scholar
Hauser, H. & Phillips, M. C. (1979). Interactions of the polar groups of phospholipid bilayer membranes. Prog. Surf. & Membrane Sci. 13, 297413.CrossRefGoogle Scholar
Hatch, M. D. & Slack, R. (1970). Photosynthetic CO2 fixation pathways. A. Rev. Pl. Physiol. 21, 141162.CrossRefGoogle Scholar
Heber, U. (1974). Metabolic exchange between chloroplasts and cytoplasm. A. Rev. Pl. Physiol. 25, 393421.CrossRefGoogle Scholar
Heber, U. & Heldt, H. W. (1981). The chloroplast envelope: structure, function and role in leaf metabolism. A. Rev. Pl. Physiol. 32, 139168.CrossRefGoogle Scholar
Hendricks, S. B. & Borthwick, H. A. (1967). The function of phytochrome in regulation of plant growth. Proc. natn. Acad. Sci. U.S.A. 58, 21252130.CrossRefGoogle ScholarPubMed
Henriques, F. & Park, R. B. (1978). Characterisation of three new chlorophyll-protein complexes. Biochem. biophys. Res. Commun. 81, 11131118.CrossRefGoogle ScholarPubMed
Hill, R. (1939). Oxygen produced by isolated chloroplasts. Proc. R. Soc. B 127, 192210.Google Scholar
Hill, R. (1951). Oxyreduction in chloroplasts. Adv. Enzymol. 12, 139.Google Scholar
Hill, R. & Bendall, F. (1960). Function of the two cytochrome components in chloroplasts; a working hypothesis. Nature, Land. 186, 136–127.CrossRefGoogle Scholar
Hind, G., Nakatani, H. Y. & Izawa, S. (1974). Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc. natn. Acad. Sci. U.S.A. 71, 14841488.CrossRefGoogle ScholarPubMed
Horton, P., Allen, J. F., Black, M. T. & Bennett, J. (1981). Regulation of phosphorylation of chloroplast membrane polypeptides by the redox state of the plastoquinone. FEBS Lett. 125, 193196.CrossRefGoogle Scholar
Houston, R. A. (1938). A Treatise on Light. London: Longmans-Green.Google Scholar
Hurt, E. & Hauska, G. (1981). A cytochrome f/be complex of five polypeptides with plastoquinol-plastocyanin-oxireductase activity from spinach chloroplasts. Eur. J. Biochem. 117, 591599.CrossRefGoogle ScholarPubMed
Isler, O. (1971). Carotenoids. Basel: Birkhauser-Verlag.CrossRefGoogle Scholar
Israelachvili, J. N. & Adams, G. E. (1978). Measurement of forces between two mica surfaces on aqueous electrolyte solutions in the range o-ioo nm. J. chem. Soc., Faraday Trans. I 74, 9751001.Google Scholar
Israelachvili, J. N., Marcelja, S. & Horn, R. G. (1980). Physical principles of membrane organisation. Q. Rev. Biophys. 13, 121200.CrossRefGoogle Scholar
Itoh, M., Izawa, S. & Shibata, K. (1963). Shrinkage of whole chloroplasts upon illumination. Biochim. biophys. Acta 66, 319327.CrossRefGoogle Scholar
Itoh, S. (1978 a). Electrostatic state of the membrane surface and the reactivity between ferricyanide and electron transport components inside chloroplast membranes. Plant Cell Physiol. 19, 149166.Google Scholar
Itoh, S. (1978 b). Membrane surface potential and the reactivity of the system II primary electron acceptor to charged electron carriers in the medium. Biochim. biophys. Acta 504, 334340.Google ScholarPubMed
Itoh, S. (1979 a). Surface potential and reaction of membrane-bound electron transfer components. I. Reactions of P-700 in sonicated chloroplasts with redox reagents. Biochim. biophys. Acta 548, 579595.CrossRefGoogle ScholarPubMed
Itoh, S. (1979 b). Surface potential and reaction to the membrane-bound electron transfer components. II. Integrity of the chloroplast membrane and the reaction of P-700. Biochim. biophys. Acta 548, 596607.CrossRefGoogle Scholar
Itoh, S. (1980). Effects of surface potential and membrane potential on the midpoint potential of cytochrome c−555 bound to the chromato-phore membrane of Chromatium vinosum. Biochim. biophys. Acta 591, 346355.CrossRefGoogle Scholar
Izawa, S. & Good, N. E. (1966). Effects of salts and electron transport on the confirmation of isolated chloroplasts. II. Electron microscopy. Pl. Physiol. 41, 544552.CrossRefGoogle Scholar
Jablonski, A. (1933). Efficiency of anti-Stokes fluorescence in dyes. Nature, Land. 131, 839840.CrossRefGoogle Scholar
Jeffrey, S. W. (1972). Preparation and some properties of crystalline chlorophyll c 1 and c 2 from marine algae. Biochim. biophys. Acta 279, 1533.CrossRefGoogle ScholarPubMed
Jennings, R. C., Garlaschi, F. M., Gerola, P. D. & Forti, G. (1979). Partition zone penetration by chymotrypsin, and the localisation of the chloroplast flavoprotein and photosystem II. Biochim. biophys. Acta 546, 207219.CrossRefGoogle ScholarPubMed
Jortner, J. A., Rice, S. A. & Hochstrasser, R. M. (1969). Radiationless transitions in photochemistry. In Adv. Photochem. 7, 150309.Google Scholar
Junge, W., Ausländer, W., McGeer, A. J. & Runge, T. (1979). The buffering capacity of the internal phase of thylakoids and the magnitude of the pH changes inside under flashing light. Biochim. biophys. Acta 546, 121141.CrossRefGoogle Scholar
Junge, W. & Jackson, J. B. (1982). The development of electrochemical potential gradients. In Photosynthesis, vol. 1 (ed. Govindjee, ), pp. 589646. New York: Academic Press.CrossRefGoogle Scholar
Kahn, A., Boardman, N. K. & Thorne, S. W. (1970). Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex in vivo and in vitro. J. molec. Biol. 48, 85101.CrossRefGoogle Scholar
Kaplan, S. & Arntzen, C. J. (1982). Photosynthetic membrane structure and function. In Photosynthesis, vol. 1 (ed. Govindjee, ), pp. 65151. New York: Academic Press.CrossRefGoogle Scholar
Kasha, M. (1950). Characterisation of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 1419.CrossRefGoogle Scholar
Kell, D. B. (1979). On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim. biophys. Acta 549, 5599.CrossRefGoogle ScholarPubMed
Kelly, A. & Porter, G. (1970). Model systems for photosynthesis. I. Energy transfer and light harvesting mechanisms. Proc. R. Soc. A 315, 149161.Google Scholar
Kerker, M. (1969). The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press.Google Scholar
Kerker, M. (1977). Some recent reflections on light scattering. J. Colloid Interface Sci. 58, 100112.CrossRefGoogle Scholar
Kirk, J. T. O. & Tilney-Bassett, R. A. E. (1978). The Plastids, Their Chemistry, Structure, Growth and Inheritance, 2nd ed.Amsterdam: Elsevier.Google Scholar
Kok, B. & Hoch, G. (1961). In Light and Life (ed. McElroy, W. D. and Glass, B.), p. 397. Baltimore: Johns Hopkins.Google Scholar
Kortum, G. (1969). Reflectance Spectroscopy. Berlin: Springer Verlag.CrossRefGoogle Scholar
Krause, G. H. (1977). Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim. biophys. Acta 460, 500510.CrossRefGoogle ScholarPubMed
Larkum, A. W. & Barrett, J. (1983). Light harvesting processes in algae. Adv. Bot. Res. (in the Press).CrossRefGoogle Scholar
Latimer, P. & Rabinowitch, E. (1959). Selective scattering of light by pigments in vivo. Archs Biochem. Biophys. 84, 428441.CrossRefGoogle ScholarPubMed
LeNeveu, D. M., Rand, R. P. & Parsegian, V. A. (1976). Measurement of forces between lecithin bilayers. Nature, Land. 2592, 601603.CrossRefGoogle Scholar
LeNeveu, D. M., Rand, R. P., Parsegian, V. A. & Gingell, D. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J. 18, 209230.CrossRefGoogle ScholarPubMed
Leonard, J. & Singer, S. J. (1966). Protein conformation in cell membrane preparations as studied by optical rotary dispersion and circular dichroism. Proc. natn. Acad. Sci. U.S.A. 56, 18281835.CrossRefGoogle Scholar
Leong, T.-Y. & Briggs, W. R. (1981). Partial purification and characterisation of a blue-light sensitive cytochrome-flavin complex from corn membranes. Pl. Physiol. 67, 10421046.CrossRefGoogle ScholarPubMed
Leong, T.-Y., Vierstra, R. D. & Briggs, W. R. (1981). A blue-light-sensitive cytochrome-flavin complex from corn coleoptiles. Further characterisation. Photochem. Photobiol. 34, 607703.CrossRefGoogle Scholar
Leong, T.-Y. & Briggs, W. R. (1982). Evidence from studies with acifluorfen for participation of a flavin-cytochrome complex in blue-light photoreception for phototropism of oat coleoptiles. Pl. Physiol. (in the Press).CrossRefGoogle Scholar
Lewis, G. N. & Kasha, M. (1944). Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 21002116.CrossRefGoogle Scholar
Loudon, R. (1973). The Quantum Theory of Light. Oxford: Clarendon Press.Google Scholar
Mahanty, J. & Ninham, B. W. (1976). Dispersion Forces. New York: Academic Press.Google Scholar
Mansfield, R. W., Nakatani, H. T., Barber, J., Mauro, S. & Lannoye, R. (1982). Charge density of the inner surface of pea thylakoid membranes. FEES Lett. 137, 133136.CrossRefGoogle Scholar
McLaughlin, S. G. (1977). Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membranes & Transp. 9, 71155.CrossRefGoogle Scholar
Marcelja, S. & Radic, N. (1976). Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42, 129130.CrossRefGoogle Scholar
Matsuura, K., Kazumori, M., Itoh, S. & Nishimura, M. (1979). Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudo-monas spheroides. Biochim. biophys. Acta 547, 91102.CrossRefGoogle Scholar
Matsuura, K., Masamoto, K., Itoh, S. & Nishimura, M. (1980). Surface potential on the periplasmic side of the photosynthetic membrane of Rhodopseudomonas spheroides. Biochim. biophys. Acta 592, 121129.CrossRefGoogle Scholar
Menke, W. (1962). Structure and chemistry of plastids. A. Rev. Pl. Physiol. 13, 2744.CrossRefGoogle Scholar
Miller, K. R. & Staehlin, L. A. (1976). Analysis of the thylakoid outer surface. Coupling factor is limited to the unstacked membrane regions. J. Cell Biol. 68, 2047.CrossRefGoogle Scholar
Mitchell, D. J. & Richmond, P. (1974). A general formalism for the calculation of free energies of inhomogeneous dielectric and electrolyte systems. J. Colloid Interface Sci. 46, 118127.CrossRefGoogle Scholar
Mitchell, P. (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodwin: Glynn Research Ltd.CrossRefGoogle ScholarPubMed
Mitchell, P. (1977). A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photo-synthetic phosphorylation. FEES Lett. 78, 120.CrossRefGoogle Scholar
Mohr, H. (1972). In Photomorphogenesis. Berlin: Springer.CrossRefGoogle Scholar
Mullet, J. E., Burke, J. J. & Arntzen, C. J. (1980). Chlorophyll-proteins of Photosystem I. Pl. Physiol. 65, 814822.CrossRefGoogle ScholarPubMed
Murakami, S. & Packer, L. (1970). Protonation and chloroplast membrane structure. J. Cell Biol. 47, 332351.CrossRefGoogle ScholarPubMed
Murata, N. (1969). Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim. biophys. Acta 189, 171181.CrossRefGoogle ScholarPubMed
Nakatani, H. Y., Barber, J. & Forrester, J. A. (1978). Surface charges on chloroplast membrane surface properties on the distribution of ions in chloroplasts. Biochim. biophys. Acta 504, 215225.CrossRefGoogle Scholar
Nakatani, H. Y., Barber, J. & Minski, M. J. (1979). The influence of the thylakoid membrane surface properties on the distribution of ions in chloroplasts. Biochim. biophys. Acta 545, 2435.CrossRefGoogle ScholarPubMed
Neumann, J. & Jagendorf, A. T. (1964). Light induced pH changes related to phosphorylation by chloroplasts. Archs Biochem. Biophys. 107, 109119.CrossRefGoogle ScholarPubMed
Ninham, B. W. & Parsegian, V. A. (1970). Van der Waals forces across triple-layer films. J. chem. Phys. 52, 45784587.CrossRefGoogle Scholar
Ninham, B. W. & Parsegian, V. A. (1971). Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiological solution. J. theor. Biol. 31, 405428.CrossRefGoogle Scholar
Ninham, B. W. (1981). Long-range vs. short-range forces. The present state of play. J. Phys. Chem. 84, 14231430.CrossRefGoogle Scholar
Nir, I. M. & Pease, D. C. (1973). Chloroplast organisation and the ultrastructural location of Photosystems I and II. J. Ultrastruct. Res. 42, 534550.CrossRefGoogle Scholar
Nir, S. & Andersen, M. J. (1977). Van der Waals interactions between cell surfaces. J. Membrane Biol. 31, 118.CrossRefGoogle Scholar
Ojakian, G. K. & Satir, P. (1974). Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc. natn. Acad. Sci. U.S.A. 71, 20522056.CrossRefGoogle ScholarPubMed
Paolillo, D. J. (1970). The three-dimensional arrangement of intergranal lamellae in chloroplasts. J. Cell Sci. 6, 243255.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Gingell, D. (1972). On the electrostatic interaction across a salt solution between two bodies bearing unequal charges. Biophys. J. 12, 11921204.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Ninham, B. W. (1973). Van der Waals forces in many-layered structures: generalizations of the Lifshitz result for two semi-infinite media. J. theor. Biol. 38, 101109.CrossRefGoogle Scholar
Parsegian, V. A., Fuller, N. & Rand, R. P. (1979). Measured work of deformation and repulsion of lecithin bilayers. Proc. natn. Acad. Sci. U.S.A. 76, 27502754.CrossRefGoogle ScholarPubMed
Pashley, R. M. (1981 a). Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 80, 153162.CrossRefGoogle Scholar
Pashley, R. M. (1981 b). DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci. 83, 531546.CrossRefGoogle Scholar
Peters, K. & Richards, F. M. (1977). Chemical cross-linking reagents and problems in studies of membrane structure. A. Rev. Biochem. 46, 523551.CrossRefGoogle ScholarPubMed
Pethig, R. (1977). In Dielectric and Related Molecular Processes, Spec. Period. Rep., vol. 3, pp. 219251. London: Chemical Society.Google Scholar
Pick, U., Rottenberg, H. & Avron, M. (1974). The dependence of photophosphorylation in chloroplasts on ΔpH and external pH. FEES Lett. 48, 3236.CrossRefGoogle Scholar
Remy, R., Tremolieres, A., Davel, J. C., Amard-Bretteville, F. & Dubacq, J. P. (1982). Study of the supramolecular organisation of light-harvesting chlorophyll protein (LHCP). FEES Lett. 137, 271275.CrossRefGoogle Scholar
Rich, P. R. & Bendall, D. S. (1980). The redox potentials of the b-type cytochromes of higher plant chloroplasts. Biochim. biophys. Acta 591, 153161.CrossRefGoogle ScholarPubMed
Robertson, J. D. (1964). In Cellular Membranes in Development (ed. Locke, M.), pp. 18. New York: Academic Press.Google Scholar
Robertson, R. N. & Boardman, N. K. (1975). The link between charge separation, proton movement, and ATPase reactions. FEES Lett. 60, 16.CrossRefGoogle ScholarPubMed
Rottenberg, H., Grunwald, T. & Avron, M. (1972). Determination of ΔpH in chloroplasts. I. Distribution of [14C]methylamine. Eur. J. Biochem. 25, 5463.CrossRefGoogle Scholar
Rubin, B. T., Chow, W. S. & Barber, J. (1981). Experimental and theoretical considerations of mechanisms controlling cation effects on thylakoid membrane stacking and chlorophyll fluorescence. Biochim. biophys. Acta 634, 174190.CrossRefGoogle ScholarPubMed
Ryrie, I. J. & Fuad, N. (1982). Membrane adhesion in reconstituted proteoliposomes containing the light-harvesting chlorophyll a/b-protein complex: the role of charged surface groups. Archs Biochem. Biophys. 214, 475488.CrossRefGoogle ScholarPubMed
Sane, P. V., Goodchild, D. J. & Park, R. B. (1970). Characterisation of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim. biophys. Acta 216, 162178.CrossRefGoogle ScholarPubMed
Sauve, R. & Ohki, S. (1979). Interactions of divalent cations with negatively charged membrane surfaces. I. Discrete charge potential. J. theor. Biol. 81, 157179.CrossRefGoogle ScholarPubMed
Schuldiner, S., Rottenberg, H. & Avron, M. (1972). Determination of ΔpH in chloroplasts. 2. Fluorescent amines as a probe for determination of ΔpH in chloroplasts. Eur. J. Biochem. 25, 6470.CrossRefGoogle Scholar
Sculley, M. J., Duniec, J. T. & Thorne, S. W. (1979). Reconciliation of theory and experiment on 90° selective scattering spectra as a measure of intact or broken, granal or agranal chloroplasts. FEES Lett. 98, 377380.CrossRefGoogle ScholarPubMed
Sculley, M. J., Duniec, J. T., Thorne, S. W., Chow, W. S. & Board-Man, N. K. (1980). The stacking of chloroplast thylakoids: Analysis of the balance of forces between thylakoid membranes of chloroplasts and the role of divalent cations. Archs Biochem. Biophys. 201, 339346.CrossRefGoogle ScholarPubMed
Seely, G. R. (1970). Chlorophyll-poly(vinylpyridine) complexes. II. Depolarisation of fluorescence. J. Phys. Chem. 74, 219227.CrossRefGoogle Scholar
Seely, G. R. (1973 a). Effects of spectral variety and molecular orientation on energy trapping in the photosynthetic unit: a model calculation. J. theor. Biol. 40, 173187.CrossRefGoogle ScholarPubMed
Seely, G. R. (1973 b). Energy transfer in a model of the photosynthetic unit of green plants. J. theor. Biol. 40, 139198.CrossRefGoogle Scholar
Shapiro, A. L. & Maizel, J. V. (1969). Molecular weight estimation of polypeptides by SDS-polyacrylamide gel electrophoresis. Analyt. Biochem. 29, 505514.CrossRefGoogle ScholarPubMed
Shibata, K. (1957). Spectroscopic studies on chlorophyll formation in intact leaves. J. Biochem. 44, 147173.CrossRefGoogle Scholar
Singer, S. J. & Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N. Y. 175, 720731.CrossRefGoogle ScholarPubMed
Sjostrand, F. S. & Kretzner, F. (1975). A new freeze drying technique applied to the analysis of the molecular structure of mitochondrial and chloroplast membranes. J. Ultrastruct. Res. 53, 128.CrossRefGoogle Scholar
Smith, J. H. C. (1958). Chlorophyll Synthesis in vivo and in vitro. Washington: Carnegie.Google Scholar
Spencer, D. & Wildman, S. G. (1962). Observations on the structure of grana containing chloroplasts and a proposed model of chloroplast structure. Aust. J. biol. Sci. 15, 599610.CrossRefGoogle Scholar
Staehlin, L. A. (1976). Reversible particle movements associated with unstacking of chloroplast membranes in vitro. J. Cell Biol. 71, 136158.CrossRefGoogle Scholar
Thornber, J. P. (1975). Chlorophyll-proteins: light-harvesting and reaction centres of plants. A. Rev. Pl. Physiol. 26, 127158.CrossRefGoogle Scholar
Thornber, J. P., Alberte, R. S., Hunter, F. A., Shozawa, J. A. & Kan, K.-S. (1977). The organization of chlorophyll in the plant photo-synthetic unit. Brookhaven Symp. Biol. 28, 132148.Google Scholar
Thornber, J. P., Markwell, J. P. & Reinman, S. (1979). Plant chlorophyll-protein complexes: recent advances. Photochem. Photo-biol. 29, 12051216.CrossRefGoogle Scholar
Thorne, S. W. (1971 a). The greening of etiolated bean leaves. I. The initial photoconversion process. Biochim. biophys. Acta 226, 113127.CrossRefGoogle Scholar
Thorne, S. W. (1971 b). The greening of etiolated bean leaves. II. Secondary and further photoconversion processes. Biochim. biophys. Acta 226, 128134.CrossRefGoogle ScholarPubMed
Thorne, S. W. (1971 c). The greening of etiolated bean leaves. III. Multiple light/dark step photoconversion processes. Biochim. biophys. Acta 253, 459475.CrossRefGoogle Scholar
Thorne, S. W. & Boardman, N. K. (1971 a). The effect of temperature on the fluorescence kinetics of spinach chloroplasts. Biochim. biophys. Acta 234, 113125.CrossRefGoogle ScholarPubMed
Thorne, S. W. & Boardman, N. K. (1971 b). Formation of chlorophyll b, and fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings. Pl. Physiol. 47, 252261.CrossRefGoogle ScholarPubMed
Thorne, S. W., Horvath, G., Kahn, A. & Boardman, N. K. (1975). Light-dependent absorption and selective scattering changes at 518 nm in chloroplast thylakoid membranes. Proc. natn. Acad. Sci. U.S.A. 72, 28583862.CrossRefGoogle ScholarPubMed
Thorne, S. W., Newcomb, E. H. & Osmond, C. B. (1977). Identification of chlorophyll b in extracts of prokaryotic algae by fluorescence spectroscopy. Proc. natn. Acad. Sci. U.S.A. 74, 575578.CrossRefGoogle ScholarPubMed
Thorne, S. W., Duniec, J. T. & Lee, J. A. (1980). Refractive and dielectric properties of a chlorophyll-protein complex (LHCP) of chloroplast grana thylakoid membranes. Photobiochem. Photobiophys. 1, 161165.Google Scholar
Thorne, S. W., Duniec, J. T. & Lee, J. A. (1983). Absorbancy and fluorescence changes in relation to light-scattering changes in chloroplast thylakoid membranes. Photobiochem. Photobiophys. 5, 7178.Google Scholar
Tieman, R., Renger, G., Graber, P. & Witt, H. T. (1979). The plastoquinone port as possible hydrogen pump in photosynthesis. Biochim. biophys. Acta 546, 498519.CrossRefGoogle Scholar
Vernon, L. P. & Sealy, G. R. (1966). The Chlorophylls. New York: Academic Press.Google Scholar
Vervey, E. J. W. & Overbeek, J. TH. G. (1948). Theory of the Stability of Lyophobic Colloids. Amsterdam: Elsevier.Google Scholar
Warshel, A. & Schlosser, D. W. (1981). Electrostatic control of the efficiency of light-induced electron transfer across membranes. Proc. natn. acad. Sci. U.S.A. 78, 55645568.CrossRefGoogle ScholarPubMed
Williams, R. J. P. (1978). The history and the hypotheses concerning ATP formation by energised protons. FEES Lett. 85, 918.CrossRefGoogle ScholarPubMed
Witt, H. T., Muller, A. & Rumberg, B. (1961). Experimental evidence for the mechanism of photosynthesis. Nature, Land. 191, 194195.CrossRefGoogle ScholarPubMed
Witt, H. T. (1975). Primary acts of energy conservation in the functional membrane of photosynthesis. In Bioenergetics of Photosynthesis (ed. Govindjee, ), pp. 403554. New York: Academic Press.Google Scholar
Yerkes, C. T. & Babcock, G. T. (1981). Surface charge asymmetry and a specified calcium ion effect in chloroplast photosystem II. Biochim. biophys. Acta 634, 1929.CrossRefGoogle Scholar
Yu, W., Ho, P. P., Alfano, R. R. and Seibert, M. (1975). Fluorescent kinetics of chlorophyll in photosystems I and II enriched fractions of spinach. Biochim. biophys. Acta, 387, 159164.CrossRefGoogle ScholarPubMed
Zubarev, D. N. (1974). Nonequilibrium Statistical Thermodynamics. New York: Consultants Bureau.Google Scholar