Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T16:30:08.499Z Has data issue: false hasContentIssue false

Linear dichroism spectroscopy of nucleic acids

Published online by Cambridge University Press:  17 March 2009

Bengt Norden
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, S-412 96 Gothenburg, Sweden.
Mikael Kubista
Affiliation:
Department of Physical Chemistry, Chalmers University of Technology, S-412 96 Gothenburg, Sweden.
Tomas Kurucsev
Affiliation:
Department of Physical and Inogrganic Chemistry, The University of Adelaide, GPO Box 498, Adelaide, South Australia 5001.

Extract

This review will consider solution studies of structure and interactions of DNA and DNA complexes using linear dichroism spectroscopy, with emphasis on the technique of orientation by flow. The theoretical and experimental background to be given may serve, in addition, as a general introduction into the state of the art of linear dichroism spectroscopy, particularly as it is applied to biophysical problems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdourakhmanov, I. A., Ganago, A. O., Erokhin, Y. E., Solov'ev, A. A. & Chugunov, V. A. (1979). Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim. biophys. Acta 546, 183186.CrossRefGoogle ScholarPubMed
Åkerman, B. (1989). Electrophoretic orientation of DNA. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.Google Scholar
Åkerman, B., Jonsson, M., Moore, D. & Schellman, J. (1990). Conformational dynamics of DNA during gel electrophoresis studied by linear dichroism spectroscopy. Curr. Commun. Molec. Biol. Electrophoresis of Large DNA molecules (ed. Birren, B. and Lai, E.), pp. 2341. Cold Spring Harbor.Google Scholar
Åkerman, B., Jonsson, M. & Nordén, B. (1985). Electrophoretic orientation of DNA detected by linear dichroism spectroscopy. J. Chem. Soc. chem. Commun. 422423.CrossRefGoogle Scholar
Åkerman, B., Jonson, M. & Nordén, B (1989). Orientational dynamics of T2 DNA during agarose gel electrophoresis: influence of gel concentration and electric field strength. Biopolymers 28, 15411571.CrossRefGoogle ScholarPubMed
Albinsson, B., Kubista, M., Nordén, B.Thulstrup, E. (1989). Near-ultraviolet electronic transitions of the tryptophan chromophore: Linear dichroism, fluorescence anisotropy, and magnetic circular dichroism spectra of some indole derivatives. J. phys. Chem. 93, 66466654.CrossRefGoogle Scholar
Albinsson, B., Kubista, M., Sandros, K. & Nordén, B. (1990). Electronic linear dichroism spectrum and transition moment directions of the hypermodified nucleic acid base wybutine. J. phys. Chem. 94, 40064011.CrossRefGoogle Scholar
Albrecht, A. (1961). Polarizations and assignments of transitions: the method of photoselection. J. mol. Spectrosc. 6, 84108.CrossRefGoogle Scholar
Angerer, L. M. & Moudrianakis, E. N. (1972). Interaction of ethidium bromide with whole and selectively deproteinized deoxynucleoproteins from calf thymus. J. molec. Biol. 63, 505521.CrossRefGoogle ScholarPubMed
Antosiewicz, J. & Porschke, D. (1988). Turn of promotor DNA characterized by cAMP receptor protein characterized by bead model simulation of rotational diffusion. J. biomolec. Struct. Dynam. 55, 819837.CrossRefGoogle Scholar
Antosiewicz, J. & Porschke, D. (1989). An unusual electrooptical effect observed for DNA fragments and its apparent relation to a permanent electric moment associated with bent DNA. Biophys. Chem. 33, 1930.CrossRefGoogle ScholarPubMed
Arcos, J. C., Venkatesan, N. & Argus, M. F. (1971). Modification of the flow dichroism spectrum of rat liver nuclear DNA by in vivo alkylation with hepatocarcinogenic dialkylnitrosamines. Gann 62, 523533.Google ScholarPubMed
Arnott, S., Dover, S. D. & Wonacott, A. J. (1969). Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray and standard bond lengths and angles. Acta Crystallogr. B 25, 21922206.CrossRefGoogle Scholar
Arnott, S. & Hukins, D. W. (1972). Optimized parameters for A-DNA and B-DNA. Biochem. biophys. Res. Commun. 47, 15041510.CrossRefGoogle Scholar
Baase, W. A., Moore, D. P. & Schellman, J. A. (1988). Orientational relaxation of DNA in agarose gels. Biophys. J. 53, 408 a.Google Scholar
Baase, W. A., Staskus, P. W. & Allison, S. A. (1984). Precollapse of T7 DNA by spermidine at low ionic strength: a linear dichroism and intrinsic viscosity study. Biopolymers 23, 28352851.CrossRefGoogle ScholarPubMed
Bailly, C., Helbecque, N., Henichart, J.-P., Colson, P., Houssier, C., Ekambareswara, R., Shea, R. G. & Lown, J. W. (1990). Molecular recognition between oligopeptides and nucleic acids. DNA sequence specificity and binding properties of an acridine-linked netropsin hybrid ligand. J. molec. Recogn. 3, 2635.CrossRefGoogle ScholarPubMed
Bandekar, J. & Zundel, G. (1983). The role of C=O transition dipole–dipole coupling interaction in uracil. Spectrochim. Acta 39 A, 337341.CrossRefGoogle Scholar
Barron, L. D. (1982). Molecular Light Scattering and Optical Activity. Cambridge University Press.Google Scholar
Barton, J. K. (1989). Targeting DNA sites with chiral metal complexes. Pure appl. chem. 41, 563564.CrossRefGoogle Scholar
Barton, J. K., Danishefsky, A. T. & Goldberg, J. M. (1984). Tris(phenanthroline)-ruthenium(II) stereoselectivity in binding to DNA. J. Am. Chem. Soc. 106, 21722176.CrossRefGoogle Scholar
Barton, J. K., Dannenberg, J. J. & Raphael, A. L. (1982). Enantiomeric selectivity in binding tris(phenanthroline) zinc(II) to DNA. J. Am. Chem. Soc. 104, 49674969.CrossRefGoogle Scholar
Basu, S. (1973). Theory of linear dichroism of DNA and DNA-containing structures. J. theor. Biol. 42, 419441.CrossRefGoogle ScholarPubMed
Basu, S. (1977). Molecular arrangement of DNA in bacteriophage T4. Biopolymers 16, 22992314.CrossRefGoogle ScholarPubMed
Becker, M., Zirwer, D., Wetzel, R., Buder, E. & Schaelike, W. (1971). Hydration-dependent conformational properties of DNA in films with various sodium chloride contents. Stud. Biophys. 27, 183188.Google Scholar
Beetz, C. P., Ascarelli, G. & Arnott, S. (1979). A reinterpretation of the infrared linear dichroism of oriented nucleic acid films and a calculation of some effective partial charges on the ribose phosphate backbone. Biophys. J. 28, 1526.CrossRefGoogle Scholar
Bendet, I. & Mayfield, J. E. (1967). Ultraviolet dichroism of fd bacteriophage. Biophys. J. 7, 111119.CrossRefGoogle ScholarPubMed
Benoit, H. (1951). Application of the Kerr effect to the study of solutions of thymonucleic acid. J. Chim. phys. 47, 719721.CrossRefGoogle Scholar
Benoit, H. & Doty, P. M. (1953). Light scattering from non-gaussian chains. J. phys. Chem. 57, 958963.CrossRefGoogle Scholar
Bordas, J. Perez-Grau, L., Koch, M. H. J., Vega, M. C. & Nave, C. (1986). The superstructure of chromatin and its condensation mechanism. I. Synchroton radiation X-ray scattering results. Eur. Biophys. J. 13, 157173.CrossRefGoogle ScholarPubMed
Borejdo, J. (1989). Orientation of DNA in agarose gels. Biophys. J. 55, 11831190.CrossRefGoogle ScholarPubMed
Borejdo, J. & Burlacu, S. (1992). Distribution of actin filament lengths and their orientation measured by gel electrophoresis in capillaries. T. Muscl. Rev. cell Motil. (In the Press.)Google Scholar
Borejdo, J. & Ortega, H. (1989). Electrophoresis and orientation of F-actin in agarose gels. Biophys. J. 56, 285293.CrossRefGoogle ScholarPubMed
Borochov, N. & Eisenberg, H. (1984). Conformation of LiDNA in solutions of LiCl. Biopolymers 23, 17571769.CrossRefGoogle ScholarPubMed
Bott, C. C. & Kurucsev, T. (1975). Determination of transition moment directions by means of dichroic spectra in stretched polymer films. 1. Orientation of solutes. J. Chem. Soc. Faraday Trans. II 71, 749755.CrossRefGoogle Scholar
Bott, C. C. & Kurucsev, T. (1977 a). Orientation and transition moment directions of cytosine, cytidine and 5′-CMP in stretched poly(vinyl alcohol) films. Linear Dichroism Spectrosc. pp. 8190. Proc. Nobel Workshop, 1976 (ed. Nordén, B.).Google Scholar
Bott, C. C. & Kurucsev, T. (1977 b). Orientation and transition moment directions of small planar molecules in stretched polymer films. Spectr. Lett. 10, 495499.CrossRefGoogle Scholar
Bradbury, E. M., Price, W. C. & Wilkinson, G. R. (1961). Infrared studies of molecular configurations of DNA. J. molec. Biol. 3, 301317.CrossRefGoogle Scholar
Brahms, J., Pilet, J., Damany, H. & Chandrasekharan, V. (1968). Application of a new modulation method for linear dichroism studies of oriented biopolymers in the vacuum ultraviolet. Proc. natn. Acad. Sci. U.S.A. 60, 11301137.CrossRefGoogle ScholarPubMed
Breton, J. & Paillotin, G. (1977). Dichroism of transient absorbance changes in red spectral region used oriented chloroplasts. 1. Field indicating absorbance changes. Biochim. biophys. Acta 459, 5865.CrossRefGoogle ScholarPubMed
Broersma, S. (1960). Rotational diffusion constant of a cylindrical particle. J. chem. Phys. 32, 16261631.CrossRefGoogle Scholar
Broersma, S. (1981). Viscous force and torque constants for a cylinder. J. chem. Phys. 74, 69896990.CrossRefGoogle Scholar
Brown, E. A. & Bugg, C. E. (1980). Calcium-binding to nucleotides: structure of a hydrated calcium salt of inosine-5′ -monophosphate. Acta crystallogr. B 36, 25972604.CrossRefGoogle Scholar
Buckingham, A. A. (1962). Frequency dependence of the Kerr constant. Proc. R. Soc. Lond. A 267, 271282.Google Scholar
Buckingham, A. D. & Stephens, P. J. (1966). Magnetic optical activity. A. Rev. phys. Chem. 17, 399432.CrossRefGoogle Scholar
Burger, R. M., Peisach, J. & Horwitz, S. B. (1981). Activated bleomycin. A transient complex of drug, iron and oxygen that degrades DNA. J. biol. Chem. 256, 1163611644.CrossRefGoogle ScholarPubMed
Cairney, K. L. & Harrington, R. E. (1982). Flow birefringence of T7 phage DNA: dependence on salt concentration. Biopolymers 21, 933939.CrossRefGoogle ScholarPubMed
Callis, P. R. (1983). Electronic states and luminescence of nucleic acid systems. A. Rev. phys. Chem. 34, 329357.CrossRefGoogle Scholar
Callis, P. R. (1986). An extended semi-empirical molecular orbital study of the ππ* excited states of nucleic acid bases. Photochem. Photobiol. 44, 315332.CrossRefGoogle Scholar
Callis, P. & Davidson, N. (1969 a). Flow dichroism of DNA: a new apparatus and further studies. Biopolymers 7, 335352.CrossRefGoogle ScholarPubMed
Callis, P. & Davidson, N. (1969 b). Hydrodynamic relaxation times of DNA from decay of flow dichroism measurements. Biopolymers 8, 379390.CrossRefGoogle Scholar
Cantor, C. R. & Schimmel, P. R. (1980). Biophysical Chemistry. San Francisco: W. H. Freeman.Google Scholar
Cavalieri, L., Rosenberg, B. H. & Rosoff, M. (1956). Flow dichroism and its application to the study of deoxyribonucleic acid structure. J. Am. Chem. Soc. 78, 52355238.CrossRefGoogle Scholar
Champion, J. V., Downer, D., Meeten, G. H. & Gate, L. F. (1977). Measurement of magnetically induced linear optical birefringenced and dichroism in colloidal dispersions. J. Phys. E 10, 11371141.Google Scholar
Chang, C.-T., Miller, S. J. & Westmur, J. G. (1974). Physical studies of N-acetoxy N-2-acetyl-aminofluorene modified DNA. Biochemistry 13, 21422148.CrossRefGoogle Scholar
Charney, E. (1988). Electric linear dichroism and birefringence of biological polyelectrolytes. Q. Rev. Biophys. 21, 160.CrossRefGoogle ScholarPubMed
Charney, E. & Chen, H. H. (1987). The structure of A-DNA in solution. Proc. natn. Acad. Sci. U.S.A. 84, 15461549.CrossRefGoogle ScholarPubMed
Charney, E., Chen, H. H., Henry, E. R. & Rau, D. C. (1986). Structural information from electric dichroism measurements of DNA and alternating GC nucleic acids in solution: the question of base tilt. Biopolymers 25, 885904.CrossRefGoogle ScholarPubMed
Charney, E. & Halford, R. S. (1958). Dispersion of the electro-optic Kerr effect in the infrared region. J. chem. Phys. 29, 221228.CrossRefGoogle Scholar
Charney, E. & Milstein, J. B. (1978). Electric dichroism of poly(riboadenylic acid). Biopolymers 17, 16291655.CrossRefGoogle Scholar
Chattoraj, D. K., Gosule, L. C. & Schellman, J. A. (1978). DNA condensation with polyamines. II. Electron microscopic studies. J. molec. Biol. 121, 327337.CrossRefGoogle ScholarPubMed
Chen, H. H., Behe, M. J. & Rau, D. C. (1984). Critical amount of oligovalent ion binding required for the B-Z transition of poly(dG-m5dC). Nucleic Acids Res. 12, 23812389.CrossRefGoogle ScholarPubMed
Chen, H. H. & Clark, L. B. (1969). Polarization assignments of the electronic spectrum of purine. J. chem. Phys. 51, 18621871.CrossRefGoogle Scholar
Chen, H. H. & Clark, L. B. (1973). On the electronic spectrum of protonated adenine: a single crystal study of adenine hydrochloride. J. chem. Phys. 58, 2593.CrossRefGoogle Scholar
Chen, H. H., Charney, E. & Rau, D. C. (1982). Length changes in solution accompanying the B-Z transition of poly(dG-m5dC) induced by . Nucl. Acids Res. 10, 35613571.CrossRefGoogle ScholarPubMed
Clark, L. B. (1977). Electronic spectra of crystalline 9-ethylguanine and guanine hydrochloride. J. Am. Chem. Soc. 99, 39343938.CrossRefGoogle ScholarPubMed
Clark, L. B. (1986). Transition-moment directions of protonated 1-methylcytosine. J. Am. Chem. Soc. 108, 51095113.CrossRefGoogle Scholar
Clark, L. B. (1989). Polarization assignments in the 270-nm band of the adenine chromophore. J. phys. Chem. 93, 53455347.CrossRefGoogle Scholar
Clark, L. B. (1990). Electronic spectrum of the adenine chromophore. J. phys. Chem. 94, 28732879.CrossRefGoogle Scholar
Clark, L. B. & Philpott, M. R. (1970). Anisotropy of the singlet transitions of crystalline anthracene. J. chem. Phys. 53, 37903801.Google Scholar
Colson, P. & Houssier, C. (1989). Polyamine addition to preparation media induces chromatin condensation, irreversibly at low ionic strength. FEBS Lett. 257, 141144.CrossRefGoogle ScholarPubMed
Connell, K. E., Kurucsev, T. & Nordén, B. (1988). Electronic transitions in the near-ultraviolet spectra of uracil, thymine, uridyl(3′-5′)uridine and thymidyl(3′- 5′)thymidine. Aust.J. Chem. 41, 15091522.CrossRefGoogle Scholar
Cotton, F. A. (1973). Chemical Applications of Group Theory, 2nd ed.New York: Wiley-Interscience.Google Scholar
Couppez, M., Sautier, P., Brahmachari, S. K., Brahms, J., Liquier, J. & Taillandier, E. (1980). Site and role of the N-terminal fragment of the nucleosomal core histones in their binding to deoxyribonucleic acid as determined by vibrational spectroscopy. Biochemistry 19, 33583363.CrossRefGoogle ScholarPubMed
Cox, M. M. & Lehman, I. R. (1987). Enzymes of general recombination. A. Rev. Biochem. 56, 229262.CrossRefGoogle ScholarPubMed
Cram, J. B. & Deering, R. A. (1970). Ultraviolet inactivation dichroic ratio of oriented fd bacteriophage. Biophys. J. 10, 413422.CrossRefGoogle ScholarPubMed
Crothers, D. M., Dattagupta, N.Hogan, M., Klevan, L. & Lee, K. S. (1978). Transient electric dichroism studies of nucleosomal particles. Biochemistry 17, 45254533.CrossRefGoogle ScholarPubMed
Dabrowiak, J. C. (1982). Bleomycin. Adv. Inorg. Biochem. 4, 69113.Google Scholar
Dattagupta, N., Hogan, M. & Crothers, D. M. (1980). Interaction of netropsin and distamycin with deoxyribonucleic acid: electric dichroism study. Biochemistry 19, 59986005.CrossRefGoogle ScholarPubMed
Davidsson, Å. & Nordén, B. (1972). Polarized absorption spectra of benzene, naphthalene and anthracene obtained with a highly-sensitive linear dichroism technique. Tetrahedron Lett. 30, 3093.CrossRefGoogle Scholar
Davidsson, Å. & Nordén, B. (1974). New details in the polarized spectrum of naphthalene by means of linear dichroism studies in oriented polymer matrices. Chem. Phys. Letters 28, 221224.CrossRefGoogle Scholar
Davidsson, Å. & Nordén, B. (1976 a). On the problem of obtaining accurate circular dichroism. Calibration of circular dichroism spectrometers. Spectrochimica Acta 32 A, 717722.CrossRefGoogle Scholar
Davidsson, Å. & Nordén, B. (1976 b). Aspects on the conversion of Legrand–Grosjean circular dichroism spectrometers to linear dichroism detection. Chemica scripta 9, 4953.Google Scholar
Davidsson, Å., Nordén, B. & Seth, S. (1980). Measurement of oriented circular dichroism. Chem. Phys. Lett. 70, 313316.CrossRefGoogle Scholar
Debye, P. (1946). The intrinsic viscosity of polymer solutions. J. chem. Phys. 14, 636639.CrossRefGoogle Scholar
DeGennes, P. G. (1974). The Physics of Liquid Crystals, pp. 235236. Oxford: Clarendon Press.Google Scholar
De La Torre, J. G. & Bloomfield, V. A. (1981). Hydrodynamic properties of complex, rigid biological macromolecules. Theory and applications. Q. Rev. Biophys. 14, 81139.CrossRefGoogle Scholar
Dervan, P. B. (1986). Design of sequence-specific DNA-binding molecules. Science, Wash. 232, 464471.CrossRefGoogle ScholarPubMed
Dickerson, R. E., Kopka, M. L., Weinzierl, J., Varnum, J., Eisenberg, D. & Margoliash, E. (1967). Location of the heme in horse heart ferricytochrome c by X-ray diffractions. J. Biol. Chem. 242, 30153017.CrossRefGoogle Scholar
Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A. & Margoliash, E. (1971). Ferricytochrome c. 1. General features of the horse and bonito proteins at 2·8 Å resolution. J. biol. Chem. 246, 15111535.CrossRefGoogle Scholar
Diekmann, S., Hillen, W., Jung, M., Wells, R. D. & Poerschke, D. (1982). Electric properties and structure of DNA restriction fragments from measurements of the electric dichroism. Biophys. Chem. 15, 157167.CrossRefGoogle ScholarPubMed
Diekmann, S., Jung, M. & Teubner, M. (1984). On the orientation function of the electric dichroism of DNA. J. chem. Phys. 80, 12591262.CrossRefGoogle Scholar
Diekmann, S. & Pörschke, D. (1987). Electro-optical analysis ‘curved’ DNA fragments. Biophys. Chem. 26, 207216.CrossRefGoogle ScholarPubMed
Doglia, S., Gräslund, A., Hiort, C., Albinsson, B. & Nordén, B. (1992). Quinacrine-spectroscopic properties and interactions with polynucleotides. (Manuscript, in preparation.)Google Scholar
Dougherty, G. (1982). A gaussian disorientation model for interpreting linear dichroism measurements of DNA–drug fibres and films. J. Math. Biol. 15, 275291.CrossRefGoogle ScholarPubMed
Dougherty, A. M., Causley, G. C. & Johnson, W. C. (1983). Flow dichroism evidence for tilting of the bases when DNA is in solution. Proc. natn. Acad. Sci. U.S.A. 80, 21932195.CrossRefGoogle ScholarPubMed
Drake, A. (1986). Polarization modulation – the measurement of linear and circular dichroism. J. Phys. E 19, 170181.Google Scholar
Eaton, W. A., Hofrichter, J., Makinen, M. W., Andersen, R. D. & Ludwig, M. L. (1975). Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals. Biochemistry 14, 21462151.CrossRefGoogle ScholarPubMed
Eckert, R. & Kuhn, H. (1960). Richtungen der Übergangsmomente der Absorptionsbanden von Polyenen, Cyaninen und Vitamin B12 aus Dikroismus und Fluoreszenz-polarisation. Z. Elektrochemie 64, 356364.Google Scholar
Edmondson, S. P. & Johnson, W. C. Jr (1985 a). Base tilt of Poly[d(A)]-Poly[d(T)] and Poly[d(AT)]–Poly[d(AT)] in solution determined by linear dichroism. Biopolymers 24, 825841.CrossRefGoogle Scholar
Edmondson, S. P. & Johnson, W. C. Jr (1985 b). Base tilt of DNA in various conformations from flow linear dichroism. Biochemistry 24, 48024806.CrossRefGoogle ScholarPubMed
Edmondson, S. & Johnson, C. Jr (1986). Base tilt of B-form Poly[d(G)]–Poly[d(C)] and the B- and Z-conformations of Poly[d(GC)]–Poly[d(GC)] in solution. Biopolymers 25, 23352348.CrossRefGoogle Scholar
Egelman, E. H. & Yu, X. (1989). The location of DNA in RecA–DNA helical filaments. Science, Wash. 245, 404.CrossRefGoogle ScholarPubMed
Elvingson, C. (1991). Computer simulation of the structure of DNA molecules in an electric field. Biophysical Chemistry, in press.Google Scholar
Eriksson, S., Jernström, B., Nielsen, P. E. & Nordén, B. (1989). Interaction of benz[a]pyrene diol epoxide with chromatin studied by flow linear dichroism. FEBS Lett. 248, 201204.CrossRefGoogle Scholar
Eriksson, M., Nordén, B., Lycksell, P.-O., Gräslund, A. & Jernström, B. (1985). Structure of Z DNA in solution. A flow linear dichroism study. J. chem. Soc. chem. Cotnmun., pp. 13001302.CrossRefGoogle Scholar
Eriksson, M., Nordén, B., Jernström, B. & Gräslund, A. (1988 a). Binding geometries of benzo(a)pyrene diol epoxide isomers covalently bound to DNA. Orientational distribution. Biochemistry 27, 12131221.CrossRefGoogle ScholarPubMed
Eriksson, M., Nordén, B. & Eriksson, S. (1988 b). Anthracycline–DNA interactions studied with linear dichroism and fluorescence spectroscopy. Biochemistry 27, 81448151.CrossRefGoogle ScholarPubMed
Eriksson, M., Nordén, B., Jernström, B. & Gräslund, A. (1990). B to Z transition in poly(dG–dC) modified with benzo(a)pyrene diol epoxides studied with polarized light spectroscopy. Biopolymers 29, 12611275.CrossRefGoogle Scholar
Errara, J., Overbeck, Th. G. & Sack, H. (1935). Dispersion of the Kerr-effect of colloidal particles. J. Chim. phys. 32, 681.Google Scholar
Fayat, A. & Foucauld, A. (1970). Fréquences et intensités de bandes d'absorption infrarouge des vibrations de valence des carbonyles. Bull. Chem. Soc. France, pp. 44914510.Google Scholar
Felix, F., Ferguson, J., Güdel, H. U. & Ludi, A. (1979). Electronic spectra of complex ions (M = Fe, Ru and Os). Chem. Phys. Lett. 62, 153157.CrossRefGoogle Scholar
Fiel, R. J. (1989). Porphyrin-nucleic acid interactions: a review. J. biomol. Struct. Dyn. 6, 12591274.CrossRefGoogle ScholarPubMed
Finch, I. T. & Klug, A. (1976). Solenoidal model for superstructure in chromatin. Proc. natn. Acad. Sci. U.S.A. 73, 18971901.CrossRefGoogle ScholarPubMed
Fischer-Hjalmars, I. & Henriksson-Enflo, A. (1990). Peel, a modified PPP method, applied on the spectra of some nucleic acid bases. Int. J. Quantum Chem. 37, 517528.CrossRefGoogle Scholar
Flemming, J., Pohle, W. & Weller, K. (1988). base inclination of A- and B-DNA in oriented films as revealed by infrared linear dichroism. Int. J. Biol. Macromol. 10, 248254.CrossRefGoogle Scholar
Fornasiero, D. & Kurucsev, T. (1981). Circular dichroism spectra and the interaction between acridine dyes and deoxyribonucleic acid. J. phys. Chem. 85, 613618.CrossRefGoogle Scholar
Fornasiero, D. & Kurucsev, T. (1984). Vibronic exciton interactions. Resolution and interpretation of the temperature-dependent circular dichroism and absorption spectra of ApA and of dApdA. Eur. J. Biochem. 143, 17.CrossRefGoogle ScholarPubMed
Fornasiero, D. & Kurucsev, T. (1985). Analysis of the visible–near ultraviolet spectrum of 9-aminoacridine using dichroic spectra in stretched polymer films. Chem. Phys. Lett. 117, 176180.CrossRefGoogle Scholar
Fornasiero, D., Kurucsev, T., Lyng, R. & Nordén, B. (1989). Circular dichroism and absorption spectra of mono- and di-aminoacridines complexed to DNA. Croatica chimica Acta 62, 337347.Google Scholar
Fornasiero, D., Roos, I. A. G., Rye, K.-A & Kurucsev, T. (1981). Near-ultraviolet vibronic transitions of adenosine-5′-phosphate, adenosine, and its complexes with cis and trans-diamminedichloroplatinum(II): spectral study of isotropic absorption, linear dichroism and circular dichroism. J. Am. Chem. Soc. 103, 19081913.CrossRefGoogle Scholar
Forni, A., Moretti, I., Marconi, G., Mongelli, N. & Samori, B. (1989 b). Linear dichroism studies of the complexes between CT–DNA and distamycins. Biopolymers 28, 21772194.CrossRefGoogle ScholarPubMed
Forni, A., Moretti, I., Torre, G., Marconi, G. & Samori, G. (1989 a). Interactions of nucleic acids with distamycins. The drug monomeric chromophore. Biopolymers 28, 21612176.CrossRefGoogle ScholarPubMed
Fraser, R. D. B. (1953). The interpretation of infrared dichroism in fibrous protein structures. J. chem. Phys. 21, 15111515.CrossRefGoogle Scholar
Fraser, M. J. & Fraser, R. D. B. (1951). Evidence on the structure of deoxyribonucleic acid from measurement with polarized infra-red radiation. Nature, Lond. 167, 761762.CrossRefGoogle ScholarPubMed
Fredericq, E. & Houssier, C. (1973). Electric Dichroism and Electric Birefringence. Monographs on Physical Biochemistry (ed. Harrington, W. and Peacocke, A. R.). London: Oxford University Press.Google Scholar
Friedrich, K., Seiffert, W. & Zimmermann, H. W. (1990). Romanowsky dyes and Romanowsky–Giemsa effect. Histochemistry 93, 247256.CrossRefGoogle ScholarPubMed
Fritzsche, H. (1990). Infrared linear dichroism as a tool to monitor antitumor drug-induced changes of the conformational flexibility of biopolymers. J. molec. Struct. 219, 275280.CrossRefGoogle Scholar
Fritzsche, H. (1991). Infrared spectroscopy and infrared linear dichroism of nucleic acids. J. molec. Struct. 242, 245261.CrossRefGoogle Scholar
Fritzsche, H., Cross, T. A., Opella, S. J. & Kallenbach, N. R. (1981). Structure and architecture of the bacterial virus fd. An infrared linear dichroism study. Biophys. Chem. 14, 283291.CrossRefGoogle ScholarPubMed
Fritzsche, H., Lang, H. & Pohle, W. (1976). Evidence for B–C transition in ultraviolet-irradiated DNA. An infrared linear dichroism study. Biochim. biophys. Acta 432, 409412.CrossRefGoogle ScholarPubMed
Fritzsche, H., Lang, H., Sprinz, H. & Pohle, W. (1980). On the interaction of caffeine with nucleic acids. IV. Studies of the caffeine–DNA interaction by infrared and ultraviolet linear dichroism, proton and deuteron nuclear magnetic resonance. Biophys. Chem. 11, 121131.CrossRefGoogle ScholarPubMed
Fritzsche, H. & Rupprecht, A. (1990). Modulation of the B–A transition of DNA by potential antitumour antibiotics. Influence of the base composition of DNA. J. biomol. Struct. Dyn. 7, 1135.CrossRefGoogle Scholar
Fritzsche, H., Rupprecht, A. & Richter, M. (1984). Infrared linear dichroism of oriented DNA–ligand complexes prepared with the wet-spinning method. Nucleic Acids Res. 12, 91659177.CrossRefGoogle ScholarPubMed
Fritzsche, H., Tsang, P., Opella, S. J. & Kallenbach, N. R. (1986). Structure of the bacterial virus Pf1. An infrared linear dichroism study. Stud. Biophys. 116, 175186.Google Scholar
Fucaloro, A. F. & Forster, L. S. (1971). Stretched-film spectra and transition moments of nucleic acid bases. J. Am. Chem. Soc. 93, 64436448.CrossRefGoogle ScholarPubMed
Fuller, W., Wilkins, M. H. F., Wilson, H. R. & Hamilton, L. D. (1965). The molecular configuration of DNA. IV. X-ray diffraction study of the A form. J. molec. Biol. 12, 6080.CrossRefGoogle ScholarPubMed
Fulton, R. L. & Gouterman, M. (1964). Vibronic coupling. II. Spectra of dimers. J. chem. Phys. 41, 22802286.CrossRefGoogle Scholar
Gabler, R. & Bendet, I. (1972). Comparison of the UV flow dichroism spectra of TMV and several of its mutants. Biopolymers 11, 23932413.CrossRefGoogle ScholarPubMed
Ganago, A. O., Fok, M. V., Abdourakhamonov, I. A., Solev'ev, A. A. & Erokhin, Y. E. (1980). Analysis of the linear dichroism of reaction centres oriented in polyacrylamide gels. Molec. Biol. 14, 381389.Google Scholar
GÅrding, L. & Nordén, B. (1979). Simple formulas for rotation averages of spectroscopic intensities: II. Chem. Phys. 41, 431437.CrossRefGoogle Scholar
Geacintov, N. E. (1985). Mechanisms of interaction of polycyclic aromatic epoxides with DNA and structures of the adducts. ACS Symp. Ser. 283, 107124.CrossRefGoogle Scholar
Geacintov, N. E. (1988). Mechanisms of reaction of polycyclic aromatic epoxide derivatives with nucleic acids. In Polycyclic Aromatic Hydrocarbon Carcinogenesis: Structure–Activity Relationship (ed. Yang, S. K. and Silverman, B. D.), vol. 11, pp. 181206. Boca Raton, FL: CRC Press.Google Scholar
Geacintov, N. E., Gagliano, A. G., Ibanez, V. & Harvey, R. G. (1982). Spectroscopic characterizations and comparisons of the structures of the covalent adducts derived from the reactions of 7, 8-dihydroxy-7, 8, 9, 10-tetrahydrobenzo(a)pyrene-9, 10-oxide, and the 9, 10-epoxides of 7, 8, 9, 10-tetrahydrobenzo(a)pyrene and 9, 10, 11, 12-tetrahydrobenzo(e)pyrene with DNA. Carcinogenesis 3, 247253.CrossRefGoogle Scholar
Geacintov, N. E., Gagliano, A. G., Ibanez, V., Lee, H., Jacobs, S. A. & Harvey, R. G. (1983). Linear dichroism studies of conformations of carcinogenic-DNA adducts application to covalent complexes derived from the reactions of the two enantiomers of 9, 10-epoxy-9, 10, 11, 12-tetrahydrobenzo(e)pyrene with DNA. J. Biomol. Struct. Dyn. 1, 913923.CrossRefGoogle Scholar
Geacintov, N. E., Gagliano, A., Ivanivic, V. & Weinstein, I. B. (1978). Electric linear dichroism study on the orientation of benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide covalently bound to DNA. Biochemistry 17, 52565262.CrossRefGoogle Scholar
Geacintov, N. E., Ibanez, V., Gagliano, A. G., Jacobs, S. A. & Harvey, R. G. (1984). Stereoselective covalent binding of anti-benzo(a)pyrene diol epoxide to DNA. Conformation of enantiomer adducts. J. Biomol. Struct. Dyn. 1, 14731484.CrossRefGoogle ScholarPubMed
Geacintov, N. E., Ibanez, V., Rougee, M. & Bensasson, R. V. (1987). Orientation and linear dichroism characteristics of porphyrin–DNA complexes. Biochemistry 26, 30873092.CrossRefGoogle ScholarPubMed
Geacintov, N. E., Nostrand, F. V., Becker, J. F. & Tinkel, J. B. (1972). Magnetic field induced orientation of photosynthetic systems. Biochim. biophys. Acta 267, 6579.CrossRefGoogle ScholarPubMed
Gersanovski, D., Colson, P., Houssier, C. & Fredericq, E. (1985). Terbium(3+) as a probe of nucleic acids structure. Does it alter the DNA conformation in solution? Biochim. biophys. Acta 824, 313323.CrossRefGoogle ScholarPubMed
Gianneschi, L. P. & Kurucsev, T. (1976). Derivation and interpretation of the spectra of aggregates. 4. Adiabatic theory of exciton interactions in dimers. J. Chem. Soc. Faraday II, 72, 20952104.CrossRefGoogle Scholar
Girod, J. C., Johnson, Jr, W. C., Huntington, S. K. & Maestre, M. F. (1973). Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry 12, 50925096.CrossRefGoogle ScholarPubMed
Glaubiger, D., Kohn, D. W. & Charney, E. (1974). The reaction of anthramycin with DNA. III. Properties of the complex. Biochem. biophys. Acta 361, 303313.Google Scholar
Golub, E. I. (1964). The method of estimation of chain macromolecule rigidity. Biopolymers 2, 113121.CrossRefGoogle Scholar
Gosule, L. C. & Schellman, J. A. (1978). DNA condensation with polyamines. 1. Spectroscopic studies. J. molec. Biol. 121, 311326.CrossRefGoogle Scholar
Gräslund, A. & Jernström, B. (1989). DNA–carcinogen interaction: covalent DNA-adducts of benzo(a)pyrene 7, 8-dichemical and biophysical techniques. Q. Rev. Biophys. 22, 137.CrossRefGoogle ScholarPubMed
Gray, D. & Rubenstein, I. (1968). Ultraviolet dichroic ratio of DNA from T2 and T5 bacteriophages. Biopolymers 6, 16051631.CrossRefGoogle ScholarPubMed
Grosjean, M. & Legrand, M. (1960). Appareil de mesure du dichroism circulaire dans le visible et l'ultraviolet. C.r. hebd. Séances Acad. Sci., Paris 251, 21502152.Google Scholar
Hagerman, P. J. (1981). Investigation of flexibility of DNA using transient electric birefringence. Biopolymers 20, 15031535.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1988). Flexibility of DNA. A. Rev. Biophys. Biophys. Chem. 17, 265286.CrossRefGoogle ScholarPubMed
Hagmar, P., Dahlman, K., Takahashi, M., Carlstedt-Duke, J., Gustafsson, J. Å. & Nordén, B. (1989). Unspecific DNA binding of the DNA binding domain of the glucocorticoid receptor studied with flow linear dichroism. FEBS Lett. 253, 2832.CrossRefGoogle ScholarPubMed
Hagmar, P., Marquet, P., Colson, P., Kubista, M., Nielsen, P., Nordén, B. & Houssier, C. (1989). Electric and flow linear dichroism of unfolded and condensed chromatin: A comparative study at low and intermediate ionic strength. J. biomol. Struct. Dynam. 7, 1933.CrossRefGoogle ScholarPubMed
HÅkansson, R, Nordén, B. & Thulstrup, E. W. (1977). Magnetic circular dichroism of hétérocycles: thiophene. Chem. Phys. Lett. 50, 305308.Google Scholar
Hall, S. B. & Schellman, J. A. (1982 a). Flow dichroism of capsid DNA phages. I. Fast and slow T4B. Biopolymers 21, 19912010.CrossRefGoogle ScholarPubMed
Hall, S. B. & Schellman, J. A. (1982 b). Flow dichroism of capsid DNA phages. II. Effect of DNA deletions and intercalating dyes. Biopolymers 21, 20112031.CrossRefGoogle ScholarPubMed
Hansen, J. B., Bjerring, P., Buchardt, O., Ebbesen, P., Kanstrup, A., Karup, G., Knudsen, P., Nielsen, P., Nordén, B. & Ygge, B. (1985). Psoralenamines. Synthesis, pharmacological behavior and DNA binding. J. med. Chem. 28, 10011010.CrossRefGoogle ScholarPubMed
Hansen, J. B., Kock, T., Buchardt, O., Nielsen, P. E., Nordén, B. & Wirth, M. (1984). Trisintercalation in DNA by a tri-9-acridinyl derivative of N, N-di(6- aminohexyl)-N-(3-aminopropyl)amine. J. Chem. Soc. Commun. pp. 509511.CrossRefGoogle Scholar
Hansen, J. B. K., Koch, T., Buchardt, O., Nielsen, P. E., Wirth, M. & Nordén, B. (1983). Acridine–psoralene amines and their interactions with DNA. Biochemistry 22, 48784886.CrossRefGoogle Scholar
HÅrd, T., Fan, P. & Kearns, D. R. (1990). A fluorescence study of the binding of Hoechst 33258 and DAPI to halogenated DNAs. Photochem. Photobiol. 51, 7786.CrossRefGoogle ScholarPubMed
HÅrd, T., Hiort, C. & Nordén, B. (1987). On the use of chiral compounds for probing the DNA handedness: Z to B conversion in poly(dGm5dC) upon binding of and . J. biomol. Struct. Dynam. 5, 8996.CrossRefGoogle Scholar
HÅrd, T. & Kearns, D. R. (1986). Anisotropic motions in intercalated DNA–dye complexes. J. phys. Chem. 90, 34373444.CrossRefGoogle Scholar
HÅrd, T. & Nordén, B. (1986). Enantioselective interaction of inversion-labile tris(bipyridyl)ion(II) and tris(phenanthroline)iron(II) upon binding to DNA. A linear and circular dichroism study. Biopolymers 25, 12091228.CrossRefGoogle Scholar
Harrington, R. E. (1967). Flow birefringence. Encyclopedia of Polymer Science and Technology (ed. Mark, H. F. and Gaylord, N. G.), vol. 7, pp. 100179. New York: Wiley.Google Scholar
Hatano, M. (1986). Induced Circular Dichroism in biopolymer–dye Systems. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Haworth, I. S., Elcock, A. H., Freeman, J., Rodger, A. & Richards, W. G. (1991). Sequence selective binding to the DNA major groove: tris(1, 10-phenanthroline) metal complexes binding to poly(dG-dC) and poly(dA-dT). J. biomol. Struct Dyn. 9, 2344.CrossRefGoogle Scholar
Hiort, B., Nordén, B. & Rodger, A. (1990). Enantiopreferential DNA binding of [Ru(1, 10-phenanthroline)3]2+ studied with linear and circular dichroism. J. Am. Chem. Soc. 112, 19711982.CrossRefGoogle Scholar
Hipps, K. & Crosby, G. (1979). Applications of the photoelastic modulator to polarization spectroscopy. J. phys. Chem. 83, 555562.CrossRefGoogle Scholar
Ho, P. S., Zhou, G. & Clark, L. (1990). Polarized electronic spectra of Z-DNA single crystals. Biopolymers 30, 151163.CrossRefGoogle ScholarPubMed
Hofrichter, J. & Eaton, W. A. (1976). Linear dichroism of biological chromophores. A. Rev. Biophys. Bioengng 5, 511560.CrossRefGoogle ScholarPubMed
Hofrichter, H. J. & Schellman, J. A. (1973). The optical properties of oriented biopolymers. Conference on Biological Molecules & Polymers. The Jerusalem Symposia on Quantum Chem. & Biochem. No. v.Israel Academy of Sciences and Humanities,Jerusalem,1973.Google Scholar
Hogan, M., Dattagupta, N. & Crothers, D. M. (1978). Transient electric dichroism of rod-like DNA molecules. Proc. natn. Acad. Sci. U.S.A. 75, 195199.CrossRefGoogle ScholarPubMed
Hogan, M., Dattagupta, N. & Crothers, D. M. (1979). Transient electric dichroism studies of the structure of DNA complex with intercalated drugs. Biochemistry 18, 280288.CrossRefGoogle ScholarPubMed
Hogan, M., Dattagupta, N. & Whitlock, J. P. Jr (1981). Carcinogen-induced alteration of DNA structure. J. biol. Chem. 256, 45044513.CrossRefGoogle ScholarPubMed
Holzwarth, G.Kursar, T. (1975). Linear dichroism of deoxyribose methylidine vibrations in DNA. Polym. Prepr. Am. Chem. Soc. 16, 811.Google Scholar
Holzwarth, G., McKee, C. B., Steiger, S. & Crater, G. (1987). Transient orientation of linear DNA molecules during pulsed-field gel electrophoresis. Nucl. Acids Res. 15, 1003110044.CrossRefGoogle ScholarPubMed
Horak, M. & Gut, J. (1961). Nucleic acid components and their analogues. XI. Infrared spectroscopy of uracil, 6-azauracil and their derivatives in the carbonyl group stretching vibration region. Coll. Czech. Chem. Commun. 26, 16801693.CrossRefGoogle Scholar
Houssier, C., Depauw-Gillet, M. C., Hacha, R. & Fredericq, E. (1983). Alteration in the nucleosome and chromatin structures upon interaction with platinum coordination complexes. Biochim. biophys. Acta 739, 317325.CrossRefGoogle ScholarPubMed
Houssier, C. & Kuball, H. G. (1971). Electrooptical properties of nucleic acids and nucleoproteins. III. Kramers–Kronig relations in linear birefringence and dichroism. Application to a DNA–proflavine complex. Biopolymers 10, 24212433.CrossRefGoogle Scholar
Houssier, C., Hardy, B. & Fredericq, E. (1974). Interaction of ethidium bromide with DNA. Optical and electrooptical study. Biopolymers 13, 11411160.CrossRefGoogle ScholarPubMed
Hurley, I. (1986). DNA orientation during gel electrophoresis and its relation to electrophoretic mobility. Biopolymers 25, 539554.CrossRefGoogle ScholarPubMed
Ingwall, J. S. (1972). Circular dichroism of nucleosides. I. Anomeric pairs of the D-pentafuranosides of adenine. J. Am. Chem. Soc. 94, 54875495.CrossRefGoogle ScholarPubMed
Inoue, S. & Sato, H. (1962). Arrangement of DNA in living sperm: a biophysical analysis. Science, Wash. 136, 11221124.CrossRefGoogle Scholar
Jablonski, A. (1934). Polarized photoluminescence of adsorbed molecules of dyes. Nature, Lond. 133, 140.CrossRefGoogle Scholar
Jackson, K. & Mason, S. F. (1971). Linear and circular dichroism studies of DNA–monoaminoacridine complexes. Faraday Soc. Trans. 67, 966989.CrossRefGoogle Scholar
Jakobi, H., Novak, A. & Kuhn, H. (1962). IR-dikroismus länglicher Molekule in gestreckten Polyäthylen- und polyvinylalkoholfolien. Z. Elektrochem. 66, 863870.Google Scholar
Jennings, B. R. (ed). (1979). Electro-optics and Dielectrics of Macromolecules and Colloids. New York and London: Plenum Press.CrossRefGoogle Scholar
Jensen, H. P. (1980). Solid state circular dichroism spectra obtained by phase modulation spectroscopy exemplified by the tris(ethylenediamine)chromium(III) chromophore. Appl. Spectrosc. 34, 360363.CrossRefGoogle Scholar
Jensen, H. P., Schellman, J. A., Troxell, T. (1978). Modulation techniques in polarization spectroscopy. Appl. Spectrosc. 32, 192200.CrossRefGoogle Scholar
Jeppesen, C. & Nielsen, P. E. (1989). Photofootprinting of drug-binding sites on DNA using diazo- and azido-9-aminoacridine derivatives. Eur. J. Biochem. 182, 437447.CrossRefGoogle ScholarPubMed
Jernström, B., Lycksell, P.-O., Gräslund, A. & Nordén, B. (1984). Antibenzo(a)pyrene-7, 8-dihydrodiol-9, 10-oxide enantiomers of different carcinogenic potency. Carcinogenesis 5, 11291135.CrossRefGoogle Scholar
Jerrard, H. G. (1959). Theories of streaming double refraction. Chem. Rev. 59, 345428.CrossRefGoogle Scholar
Johansson, L. B.-Å., Davidsson, Å., Lindblom, G. & Nordén, B. (1978). Linear dichroism as a tool for studying molecular orientation in membrane systems. II. Order parameters of guest molecules from LD and NMR. J. phys. Chem. 82, 26042609.CrossRefGoogle Scholar
Johansson, L. B.-Å. & Lindblom, G. (1980). Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Q. Rev. Biophys. 13, 63118.CrossRefGoogle ScholarPubMed
Johansson, L. B.-Å., Lindblom, G. & Naqvi, K. R. (1981). Fluorescence detected linear dichroism. A new method for studies of molecular orientation in uniaxial systems. J. chem. Phys. 74, 37743778.CrossRefGoogle Scholar
Johnson, W. C. Jr (1988). Extending linear dichroism measurements into the vacuum ultraviolet for improved information content. Pol. Spectrosc. pp. 167183.Google Scholar
Johnson, W. C. Jr & Girod, J. C. (1974). Novel denaturation of DNA. Biochem. biophys. Acta 353, 193199.Google ScholarPubMed
Jonsson, M., Åkerman, B. & Nordén, B. (1988). Orientation of DNA during gel electrophoresis studied with linear dichroism spectroscopy. Biopolymers 27, 381414.CrossRefGoogle ScholarPubMed
Joyce, D. E. & Kurucsev, T. (1974). Study of exciton interactions in some pyrimidine dinucleotides in aqueous solution by means by absorption spectroscopy. Biophys. Chem. 2, 273277.CrossRefGoogle ScholarPubMed
Karpel, R. L., Bertelson, A. H. & Fresco, J. R. (1980). Stabilization of nucleic acid secondary structure by cationic metal complexes. Biochemistry 19, 504512.CrossRefGoogle ScholarPubMed
Kay, E. (1976). Double-stranded DNA in methanol-ethanol-buffer solvent system. Biochemistry, Wash. 15, 52415246.CrossRefGoogle ScholarPubMed
Kelly, G. R. & Kurucsev, T. (1974). Interaction between purine derivatives: electronic spectral studies. II. Exciton interaction in the dimer of 6-methylpurine in aqueous solution. Biopolymers 13, 769778.CrossRefGoogle Scholar
Kelly, G. R. & Kurucsev, T. (1975). Ultraviolet-visible spectroscopy of polymer films: reduction of scattering losses. European Polymer J. 11, 581583.CrossRefGoogle Scholar
Kelly, G. R. & Kurucsev, T. (1976). Geometry of DNA-dye intercalation complexes from study of linear dichroic spectra of stretched films. Biopolymers 15, 14811490.CrossRefGoogle ScholarPubMed
Kemp, J. (1969). Piezo-optical birefringence modulators: new use for a long-known effect. J. Opt. Soc. Am. 59, 950954.CrossRefGoogle Scholar
Kim, S. G., Eriksson, S. & Nordén, B. (1992). Interaction between DNA and 4′, 6- diamidono-2-phenylindole (DAPI). Different binding site geometries as revealed from linear dichroism and fluorescence quenching studies. (Manuscript.)Google Scholar
Koch, M. H. J. (1989). Structure and condensation of chromatin. Protein–Nucleic Acid Interaction 10, 163204.CrossRefGoogle Scholar
Koch, M. H. J., Sayers, Z., Michon, A. M., Sicre, P., Marquet, R. & Houssier, C. (1989). The superstructure of chromatin and its condensation mechanism. VI. Electric dichroism and model calculations. Eur. Biophys. J. 17, 245255.CrossRefGoogle ScholarPubMed
Kovacic, R. T. & Van Holde, K. E. (1977). Sedimentation of homogeneous double-strand DNA molecules. Biochemistry 16, 14901498.CrossRefGoogle ScholarPubMed
Kratky, O. & Porod, G. (1949). Röntgenuntersuchungen gelöster Fadenmoleküle (X-ray studies of linear polymers in solution). Recl Trav. chim. Pays-Bas Belg. 68, 11061122.CrossRefGoogle Scholar
Krause, S. (ed). (1981). Molecular Electro-Optics. NATO Adv. Study Inst. Series, series B, Physics, vol. 64. New York: Plenum Press.CrossRefGoogle Scholar
Kubista, M. (1988). Protein–DNA complexes studied with polarized-light spectroscopy. Doctoral thesis. Chalmers University of Technology.Google Scholar
Kubista, M., Åkerman, B. & Albinsson, B. (1989). Characterization of the electronic structure of 4′, 6-diamidino-2-phenylindole. J. Am. Chem. Soc. 111, 70317035.CrossRefGoogle Scholar
Kubista, M., Åkerman, B. & Nordén, B. (1987). Characterization of interaction between DNA and 4′, 6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26, 45454553.CrossRefGoogle ScholarPubMed
Kubista, M. K., Åkerman, B. & Nordén, B. (1988 b). Induced circular dichroism in non-intercalative DNA–drug complexes. Sector rules for structural applications. J. phys. Chem. 92, 23522356.CrossRefGoogle Scholar
Kubista, M., Hagmar, P., Nielsen, P. E. & Nordén, B. (1990 a). Reinterpretation of linear dichroism of chromatin supports a perpendicular linker orientation in the folded state. J. biomol. Struct. Dyn. 8, 3754.CrossRefGoogle ScholarPubMed
Kubista, M., Härd, T., Nielsen, P. & Nordén, B. (1985). Structural transitions of chromatin at low salt concentrations – a flow linear dichroism study. Biochemistry 24, 63366342.CrossRefGoogle ScholarPubMed
Kubista, M., Nielsen, P. & Nordén, B. (1988 a). Flow linear dichroism supports an accordion model for the salt-induced condensation of chromatin. Biochemical Pharmac. 37, 18131814.CrossRefGoogle ScholarPubMed
Kubista, M., Takahashi, M. & Nordén, B. (1988 c). Competitive binding between unmodified and etheno DNA provides information about structure and stoichiometry of RecA–DNA complexes. Nucleosides & Nucleotides 7, 783786.CrossRefGoogle Scholar
Kubista, M., Takahashi, M. & Nordén, B. (1990 b). Stoichiometry, base orientation, and nuclease accessibility of RecA–DNA complexes seen by polarized light in flow oriented solution. Implications for the mechanism of genetic recombination. J. biol. Chem. 265, 1889118897.CrossRefGoogle ScholarPubMed
Kuhn, H. (1949). A quantum-mechanical theory of light absorption of organic dyes and similar compounds. J. chem. Phys. 17, 11981212.CrossRefGoogle Scholar
Kuhn, W. (1939). Molekülkonstellation und Kristallitorientiering als Ursachen kautschukähnlicher Elastizität. Kolloidzeitschrift 87, 312.Google Scholar
Kuhn, W. & Grün, F. (1942). Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloidzeitschrift 101, 248271.Google Scholar
Kuhn, W. & Kuhn, H. (1945). Wanderungsdoppelbrechung von Fadenmolekulionen im elektrischen Feld. Helv. chim. Acta 28, 493499.Google Scholar
Kurucsev, T. & Strauss, U. P. (1970). Derivation and interpretation of the spectrum of the dimer of acridine orange hydrochloride; dilute aqueous solution and oriented film studies. J. phys. Chem. 74, 30813085.CrossRefGoogle Scholar
Kurucsev, T. & Zdysiewicz, J. R. (1971). Simple methods for the orientation of DNA molecules in films suitable for optical studies. Biopolymers 10, 593599.CrossRefGoogle ScholarPubMed
Lang, D., Taylor, T. N., Dobyan, D. C. & Gray, D. M. (1976). Dehydrated circular DNA – electron-microscopy of ethanolcondensed molecules. J. molec. Biol. 106, 97107.CrossRefGoogle ScholarPubMed
Lapointe, J. & Marvin, D. A. (1972). Filamentous bacterial viruses. VIII. Liquid crystals of fd. Molec. Cryst. Liquid Cryst. 19, 269278.CrossRefGoogle Scholar
Larsen, T. A., Goodsell, D. S., Cascio, D., Grzeskowiak, K. & Dickerson, E. (1989). The structure of DAPI bound to DNA. J. Biomolec. Struct. Dyn. 7, 477.CrossRefGoogle ScholarPubMed
Lauffer, M. A. (1938). Optical properties of solutions of tobacco mosaic virus protein. J. phys. Chem. 42, 935944.CrossRefGoogle Scholar
Lee, C. H. & Charney, E. (1982). Solution conformation of DNA. J. molec. Biol. 161, 289303.CrossRefGoogle ScholarPubMed
Lee, C. S. & Davidson, N. (1968). Flow dichroism of DNA solutions. Biopolymers 6, 531550.CrossRefGoogle Scholar
Lee, K. S., Mandelkern, M. & Crothers, D. M. (1981). Solution structural studies of chromatin fibers. Biochemistry, Wash. 20, 14381445.CrossRefGoogle ScholarPubMed
Lee, K. S. & Crothers, D. M. (1982). Influence of ionic strength on the dichroism properties of polynucleosomal fibers. Biopolymers 21, 101116.CrossRefGoogle ScholarPubMed
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 1830.CrossRefGoogle ScholarPubMed
Lerman, L. S. (1963). The structure of the DNA–acridine complex. Proc. natn. Acad. Sci. U.S.A. 49, 94102.CrossRefGoogle ScholarPubMed
Lindner, P. & Oberthur, R. C. (1984). Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron scattering (SANS). Revue Phys. appl. 19, 759763.CrossRefGoogle Scholar
Liquier, J., Pinot-Lafaix, M., Taillandier, E. & Brahms, J. (1975). Infrared linear dichroism investigations of deoxyribonucleic acid complexes with Poly(L-arginine) and Poly(L-lysine). Biochemistry, Wash. 14, 4191.CrossRefGoogle ScholarPubMed
Liquier, J., Gadenne, M. C., Taillandier, E., Defer, N., Favatier, F. & Kruh, J. (1979). Conformation of DNA in chromatin protein–DNA complexes studied by infrared spectroscopy. Nucl. Acids Res. 6, 14791493.CrossRefGoogle ScholarPubMed
Liquier, J., Taboury, J., Taillandier, E. & Brahms, J. (1977). Infrared linear dichroism investigations of deoxyribonucleic complexes with histones H2B and H3. Biochemistry, Wash. 16, 32623266.CrossRefGoogle ScholarPubMed
Livolant, F. (1984). Cholesteric organization of DNA in vivo and in vitro. Eur. J. Cell Biol. 33, 300311.Google ScholarPubMed
Livolant, F. & Maestre, M. F. (1988). Circular-dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro. Cholesteric liquid-crystalline phases of DNA and single dinoflagellate nuclei. Biochemistry, Wash. 27, 30563068.CrossRefGoogle ScholarPubMed
Livolant, F., Michols, W. & Maestre, M. (1988). Differential polarization microscopy (CD and linear dichroism) of polytene chromosomes and nucleoli from the dipteran Sarcophaga footpad. Biopolymers 27, 17611769.CrossRefGoogle ScholarPubMed
Lord, R. C. & Thomas, G. J. (1967). Raman spectral studies of nucleic acids and related molecules. I. Ribonucleic acid derivatives. Spectrochim. Acta 23 A, 25512591.CrossRefGoogle Scholar
Luckhurst, G. R. & Gray, G. W. (1979). Eds. Molecular Physics of Liquid Crystals. New York: Academic Press.Google Scholar
Lyng, R., Härd, T. & Nordén, B. (1987). Induced circular dichroism of DNA intercalators: electric dipole allowed transitions. Biopolymers 26, 13271345.CrossRefGoogle ScholarPubMed
Lyng, R., Rodger, A. & Nordén, B. (1991). The circular dichroism of ligand-DNA systems. 1. Poly(dG–dC) B–DNA. Biopolymers. 31, 17091720.CrossRefGoogle ScholarPubMed
McGhee, J. D., Nickol, J. M., Felsenfeld, G. & Rau, D. C. (1983). Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33, 831841.CrossRefGoogle ScholarPubMed
MacInnes, J. W. & Uretz, R. B. (1968). DNA organization in the mature sperm of several orthoptera by the method of polarized fluorescence microscopy. J. Cell Biol. 38, 426436.CrossRefGoogle ScholarPubMed
Maestre, M., Salzman, G. C., Tobey, R. A. & Bustamante, C. (1985). Circular dichroism studies in single Chinese hamster cells. Biochemistry 24, 51525157.CrossRefGoogle ScholarPubMed
Makarov, V., Dimitrov, S., Smirnov, V. & Pashev, I. (1985). A triple helix model for the structure of chromatin fibre. FEBS Lett. 181, 357361.CrossRefGoogle Scholar
Makarov, V. I., Dimitrov, I. & Petrov, T. (1983). Salt-induced conformational transitions in chromatin. A flow linear dichroism study. Eur. J. Biochem. 133, 491497.CrossRefGoogle ScholarPubMed
Makarov, V. L., Smirnov, I. & Dimitrov, S. I. (1987). Higher order folding of chromatin is induced in different ways by monovalent and by bivalent cations. FEBS Lett. 212, 263266.CrossRefGoogle ScholarPubMed
Mandel, M. (1961). Electric polarization of rodlike charged macromolecules. Molec. Phys. 4, 489496.CrossRefGoogle Scholar
Mandel, M. (1981). Polyelectrolytes. A survey in Molecular Electro-Optics (ed. Krause, S.). NATO Adv. Study Inst. Series, series B, Physics, vol. 64, pp. 285308. New York: Plenum Press.CrossRefGoogle Scholar
Mandel, M. & Odijk, T. (1984). Dielectric properties of polyelectrolyte solutions. A. Rev. Phys. Chem. 35, 75108.CrossRefGoogle Scholar
Manning, G. S. (1978 a). Limiting laws and counterion condensation in polyelectrolyte solution. V. Further development of the chemical model. Biophys. Chem. 9, 6570.CrossRefGoogle ScholarPubMed
Manning, G. S. (1978 b). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179246.CrossRefGoogle Scholar
Manning, G. S. (1981). A procedure for extracting persistence lengths from light-scattering data on intermediate molecular weight DNA. Biopolymers 20, 17511755.CrossRefGoogle Scholar
Mansy, S., Rosenberg, B. & Thomson, A. J. (1973). Binding of cis- and transdichlorodiamineplatinum(II) to nucleosides. I. Location of the binding sites. J. Am. Chem. Soc. 95, 16331640.CrossRefGoogle ScholarPubMed
Marciani, S., Terbojevic, M. & Dall'acqua, F. (1972). Light scattering and flow dichroism studies on DNA after the photoreaction with psoralen. Z. Naturforschung 27b, 196200.CrossRefGoogle Scholar
Maret, G., Schickfus, M. V., Mayer, A. & Dransfeld, K. (1975). Orientation of nucleic acids in high magnetic fields. Phys. Rev. Lett. 35, 397400.CrossRefGoogle Scholar
Marion, C. (1984). The structural organization of oligonucleosomes. J. biomol. Struct. Dynamics 2, 07391102.CrossRefGoogle ScholarPubMed
Marquet, R., Favazza, M., Koch, M. H. J. & Houssier, C. (1990). Changes in chromatin chain flexibility during condensation induced by sodium chloride, as evidenced by electric dichroism. FEBS Lett. 262, 131134.CrossRefGoogle ScholarPubMed
Marquet, R. & Houssier, C. (1988). Different binding modes of spermine to A–T and G–C base pairs modulate the bending and stiffening of the DNA double helix. J. biomolec. Struct. Dyn. 6, 235.CrossRefGoogle Scholar
Marzilli, L. G. (1981). Metal complexes of nucleic acid derivatives and nucleotides: binding sites and structures. Adv. inorg. Biochem. 3, 4785.Google Scholar
Mason, S. F. (1982). Molecular Optical Activity and Chiral Discrimination. Cambridge University Press.Google Scholar
Matos, J. M. O. & Roos, B. O. (1988). Ab initio quantum chemical study of the π-electron spectrum of the cytosine molecule. J. Am. Chem. Soc. 110, 76647671.CrossRefGoogle Scholar
Matsuoka, Y., Nielsen, P. E. & Nordén, B. (1984 c). On the structure of active chromatin. A flow linear dichroism study on chromatin fractionated by nuclease digestion. FEBS Lett. 169, 309312.CrossRefGoogle Scholar
Matsuoka, Y. & Nordén, B. (1982 a). Linear dichroism studies of nucleic acid bases in stretched poly(vinyl alcohol) film. Molecular orientation and electronic transition moment directions. J. phys. Chem. 86, 13781386.CrossRefGoogle Scholar
Matsuoka, Y. & Nordén, B. (1982 b). Linear dichroism study of 9-substituted acridines in stretched poly(vinyl alcohol) film. Chem. phys. Letters 85, 302306.CrossRefGoogle Scholar
Matsuoka, Y. & Nordén, B. (1982 c). Linear dichroism studies of nucleic acids. II. Calculation of reduced dichroism curves of A- and B-form DNA. Biopolymers 21, 24332452.CrossRefGoogle ScholarPubMed
Matsuoka, Y. & Nordén, B. (1983 a). Linear dichroism studies of nucleic acids. III. Reduced dichroism curves of DNA in ethanol–water and in poly(vinyl alcohol) films. Biopolymers 22, 17311746.CrossRefGoogle ScholarPubMed
Matsuoka, Y. & Nordén, B. (1983 b). Effects of Ag+ and Hg2+ on the structure of DNA in solution studied by flow linear dichroism. Biopolymers 22, 601604.CrossRefGoogle ScholarPubMed
Matsuoka, Y., Nordén, B. & Kurucsev, T. (1984 a). Nucleic acid–metal interactions. II. Complex of Ag(I) with guanosine and 7-methylguanine from studies of isotropic and dichroic spectra. J. phys. Chem. 88, 971976.CrossRefGoogle Scholar
Matsuoka, Y., Nordén, B. & Kurucsev, T. (1984 b). Formation of silver–adenine long-chain aggregates in neutral aqueous solution : study of flow linear dichroism. J. Chem. Soc. chem. Commun., 15731574.CrossRefGoogle Scholar
Matsuoka, Y., Nordén, B. & Kurucsev, T. (1985). Nucleic acid–metal interactions. III. Complex of Ag(I) with adenine and 1-methyladenine from studies of UV and IR dichroic spectra. J. cryst. spectr. Res. 15, 549564.CrossRefGoogle Scholar
Mayfield, J. E. & Bendet, I. J. (1970 a). Quantitative flow dichroism. I. Correction for disorientation in a solution of rods. Biopolymers 9, 655668.CrossRefGoogle Scholar
Mayfield, J. E. & Bendet, I. J. (1970 b). Quantitative flow dichroism. II. Form dichroism at ultraviolet wavelengths. Biopolymers 9, 669675.CrossRefGoogle ScholarPubMed
Michl, J. & Thulstrup, E. E. (1986). Spectroscopy with polarized light. Solute alignment by photoselection, in liquid crystals, polymers and membranes. VCH. New York.Google Scholar
Michl, J., Thulstrup, E. W. & Eggers, J. H. (1970). Polarization spectra in stretched polymer sheets. III. Physical significance of the orientation factors and determination of π → π* transition moment directions in molecules of low symmetry. J. phys. Chem. 74, 38783884.CrossRefGoogle Scholar
Mickols, W. & Maestre, M. F. (1987). Differential polarization microscopy of changes in structure in spermatocyte nuclei. Nature, Lond. 328, 452454.CrossRefGoogle ScholarPubMed
Mickols, W., Maestre, M. F., Tinoco, I. & Embury, S. H. (1985). Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light. Proc. natn. Acad. Sci. U.S.A. 82, 65276531.CrossRefGoogle ScholarPubMed
Mikati, N., Nordh, J. & Nordén, B. (1987). Scattering anisotropy of partially oriented samples. Turbidity flow linear dichroism (‘conservative dichroism’) of rod-shaped macromolecules. J. phys. Chem. 91, 60486055.CrossRefGoogle Scholar
Miki, M. & Mihashi, K. (1976). Fluorescence and flow dichroism of F-actin-epsilon- ADP; the orientation of the adenine plane relative to the long axis of F-actin. Biophys. Chem. 6, 101106.CrossRefGoogle Scholar
Mithieux, G., Roux, B. & Marion, C. (1984). Structural properties of barley nucleosomes. Biophys. Chem. 20, 111119.CrossRefGoogle ScholarPubMed
Mitra, S., Sen, D. & Crothers, D. M. (1984). Orientation of nucleosomes and linker DNA in calf thymus chromatin determined by photochemical dichroism. Nature, Lond. 308, 247250.CrossRefGoogle ScholarPubMed
Moore, D. P. M., Schellman, J. A. & Baase, W. A. (1986). The orientation, relaxation and reptation of DNA in orthogonal field, alternately-pulsed field gel electrophoresis (OFAGE); a linear dichroism study. Biophys. J. 49, 130 a.Google Scholar
Muller, B., Roller, T. & Stasiak, A. (1990). Characterization of the DNA binding activity of stable RecA–DNA complexes. J. molec. Biol. 212, 97112.CrossRefGoogle ScholarPubMed
Nave, C., Fowler, A. G., Malsey, S., Marvin, D. A., Siegrist, H. & Wachtel, E. J. (1978). Macromolecular structural transitions in Ps1 sila mentous bacterial virus. Nature, Lond. 281, 232234.CrossRefGoogle Scholar
Neuman, E. & Katchalsky, A. (1972). Long-lived conformation changes induced by electric impulses in biopolymers. Proc. natn. Acad. Sci. U.S.A. 69, 993997.CrossRefGoogle Scholar
Newman, J., Swinney, H. L. & Day, L. A. (1977). Hydrodynamic properties and structure of fd virus. J. molec. Biol. 116, 593606.CrossRefGoogle ScholarPubMed
Nielsen, P. E., Hiort, C., Buchardt, O., Dahl, O., Sönnichsen, S. H. & Nordén, B. (1991). DNA binding and photocleavage by Uranyl(VI) salts. Submitted to J. Am. Chem. Soc.Google Scholar
Nielsen, P. E., Matsuoka, Y. & Nordén, B. (1985). Stepwise unfolding of chromatin by urea. A flow linear dichroism and photoaffinity labelling study. Eur. J. Biochem. 147, 6568.CrossRefGoogle Scholar
Noda, I. & Hearst, J. E. (1971). Polymer dynamics. Shear dependent properties of linear polymers including intrinsic viscosity, relaxation and normal stresses. J. chem. Phys. 54, 23422354.CrossRefGoogle Scholar
Nordén, B. (1972). Linear dichroism of planar molecules of high symmetry. Chemica scripta 1, 145148.Google Scholar
Nordén, B. (1973 a). Detection of π → π* transitions in pyridine and pyrazine in polyethylene matrix by linear dichroism. Chem. Phys. Lett. 23, 200202.CrossRefGoogle Scholar
Nordén, B. (1973 b). On the calibration of circular dichroism spectrometers. Acta chem. scand. 27, 40214024.CrossRefGoogle Scholar
Nordén, B. (1975). Linear dichroism technique on small molecules dissolved and oriented in a polymer matrix I. Polarisations for a few electronic transitions in SO2, CS2 and NO2. Chemica scripta 7, 167172.Google Scholar
Nordén, B. (1977). Linear dichroism probes to study internal electric fields. Nature, Lond. 269, 314316.CrossRefGoogle Scholar
Nordén, B. (1978 a). Applications of linear dichroism spectroscopy. Appl. spectrosc. Rev. 14, 157248.CrossRefGoogle Scholar
Nordén, B. (1978 b). Structural evidence on DNA carcinogen interactions. Biophys. Chem. 8, 385391.CrossRefGoogle ScholarPubMed
Nordén, B. (1978 c). Rearrangement of a platinum(II) complex in DNA from intercalation outer-sphere position to non-intercalation coordination. FEBS Lett. 94, 204206.CrossRefGoogle ScholarPubMed
Nordén, B. (1979). Theoretical aspects on flow dichroism. Technical note. Department of Inorganic Chemistry. University of Lund.Google Scholar
Nordén, B. (1980). Simple formulas for dichroism analysis. III. Orientation of solutes in stretched polymer matrices. J. chem. Phys. 9, 50325038.CrossRefGoogle Scholar
Nordén, B., Elvingson, C., Eriksson, T., Kubista, M., Sjöberg, B., Takahashi, M. & Mortensen, K. (1990 a). Structure of a RecA/DNA complex from linear dichroism and small-angle neutron-scattering in flow-oriented solution. J. molec. Biol. 216, 223228.CrossRefGoogle ScholarPubMed
Nordén, B., Elvingson, C., Jonsson, M. & Åkerman, B. (1991 a). Electrophoretic orientation of DNA. Proc. First Int. Conf. Electrophoresis, Supercomputing and the Human Genome (Ed. Cantor, C. R. and Lim, H. A.), pp. 173198. New Jersey: World Scientific.Google Scholar
Nordén, B., Elvingson, C., Jonsson, M. & Åkerman, B. (1991 b). Microscopic behaviour of DNA during electrophoresis: electrophoretic orientation. Q. Rev. Biophys. 24, 103164.CrossRefGoogle ScholarPubMed
Nordén, B., Eriksson, S., Kim, S. K., Kubista, M., Lyng, R. & Åkerman, B. (1990 b). DNA drug interactions studied with polarized light spectroscopy: The DAPI case. The Jerusalem Symposia on Quantum Chemistry and Biochemistry (ed. Pullman, B. and Jortner, J.), vol. 23, pp. 2341. Dordrecht: Kluwer Academic Publishers.Google Scholar
Nordén, B., Håkansson, R., Pedersen, P. B. & Thulstrup, E. W. (1978 c). The magnetic circular dichroism of five-membered ring heterocycles. Chem. Phys. 33, 355366.CrossRefGoogle Scholar
Nordén, B., Jonsson, M., Åkerman, B. & Nordh, J. (1988). New techniques for aligning molecules: migrative orientation. In Polarized Spectroscopy of Ordered Systems, NATO ASI, Rimini, 1987 (ed. Samori, B. and Thulstrup, E. W.), pp. 197209. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Nordén, B., Lindblom, G. & Jonas, I. (1977). Linear dichroism spectroscopy as a tool for studying molecular orientation in model membrane systems. J. phys. Chem. 81, 20862093.CrossRefGoogle Scholar
Nordén, B., Matsuoka, Y. & Kurucsev, T. (1986 a). Nucleic acid–metal interactions. IV. Complexes of Ag(I) with thymine and cytosine from studies of UV and IR dichroic spectra. J. cryst. spectr. Res. 16, 217226.CrossRefGoogle Scholar
Nordén, B., Matsuoka, Y. & Kurucsev, T. (1986 b). Nucleic acid–metal interactions. V. The effect of silver(I)ions on the structures of A- and B-DNA forms. Biopolymers 25, 15311545.CrossRefGoogle Scholar
Nordén, B. & Schipper, P. E. (1978). Long-range dispersion-induced circular dichroism (DICD) of electric dipole allowed transitions. Chemica scripta 12, 7277.Google Scholar
Nordén, B. & Seth, S. (1979). Structure of strand-separated DNA in different environments studied by linear dichroism. Biopolymers 18, 23232339.CrossRefGoogle ScholarPubMed
Nordén, B. & Seth, S. (1985). Critical aspects on measurement of circular and linear dichroism. A device for absolute calibration. Applied Spectroscopy 39, 647655.CrossRefGoogle Scholar
Nordén, B., Seth, S. & Tjerneld, F. (1978 a). Renaturation of DNA in ethanol–methanol solvent induced by complexation with methyl green. Biopolymers 17, 523525.CrossRefGoogle Scholar
Nordén, B., Mortensen, K., Elvingson, C., Kubista, M., Sjöberg, B., Ryberg, M. & Takahashi, M. (1991 c). RecA–DNA complexes studied with small-angle neutron scattering and linear dichroism in flow oriented solution. (To be published.)Google Scholar
Nordén, B. & Tjerneld, F. (1976 a). High-sensitivity linear dichroism as a tool for equilibrium analysis in biochemistry. Stability constant of DNA–ethidium–bromide complex. Biophys. Chem. 4, 191198.CrossRefGoogle Scholar
Nordén, B. & Tjerneld, F. (1976 b). Binding of inert metal complexes to DNA detected by linear dichroism. FEBS Lett. 67, 368370.CrossRefGoogle ScholarPubMed
Nordén, B. & Tjerneld, F. (1977 a). Binding of methyl green to deoxyribonucleic acid analysed by linear dichroism. Chem. Phys. Lett. 50, 508512.CrossRefGoogle Scholar
Nordén, B. & Tjerneld, F. (1977 b). Optical studies on complexes between DNA and pseudoisocyanine. Biophys. Chem. 6, 3145.CrossRefGoogle Scholar
Nordén, B. & Tjerneld, F. (1977 c). Linear dichroism as a tool for characterizing strand separation in DNA. Chemica scripta 12, 1517.Google Scholar
Nordén, B. & Tjerneld, F. (1982). Structure of methylene blue–DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers 21, 17131734.CrossRefGoogle ScholarPubMed
Nordén, B., Tjerneld, F. & Palm, E. (1978 b). Linear dichroism studies of binding site structures in solution. Complexes between DNA and basic arylmethane dyes. Biophys. Chem. 8, 115.CrossRefGoogle ScholarPubMed
Nordén, B., Wirth, M., Ygge, B., Buchardt, O. & Nielsen, P. E. (1986 c). Interactions between DNA and psoralenamines studied with dichroism techniques. Photochem. Photobiol. 44, 587594.CrossRefGoogle ScholarPubMed
Nordh, J., Deinum, J. & Nordén, B. (1986). Flow orientation of brain microtubules studied by linear dichroism. Eur. Biophys. J. 14, 113122.CrossRefGoogle ScholarPubMed
Novros, J. S. & Clark, L. B. (1986). On the electronic spectrum of 1-methyluracil. J. Phys. Chem. 90, 56665668.CrossRefGoogle Scholar
Ohmes, E., Pauluhn, J., Weidner, J.-U. & Zimmermann, H. W. (1980). Polarisation-soptische mikrospektralphotometrische Untersuchung zur Bindungsgeometrie von intercaliertem Ethidiumbromid. Theorie für die Lichtabsorption orientierter doppelbrechender Fäden. Ber. BungsenGes. phys. Chem. 84, 2336.CrossRefGoogle Scholar
O'Konski, C. T. & Zimm, B. H. (1950). new method for studying electrical orientation and relaxation effects in aqueous colloids: preliminary results with tobacco mosaik virus. Science, Wash, 111, 113116.CrossRefGoogle Scholar
Oosawa, F. (1970). Counterion fluctuations and dielectric dispersion in linear polyelectroytes. Biopolymers 9, 677688.CrossRefGoogle Scholar
Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.Google Scholar
Oriel, P. & Schellman, J. A. (1966). Studies of the birefringence and birefringence dispersion of polypeptides and proteins. Biopolymers 4, 469494.CrossRefGoogle ScholarPubMed
Ovaska, M., Nordén, B. & Matsuoka, Y. (1984). Transition moment directions of some important in-plane vibrations of uracil, thymine and cytosine. A fixed partial charge model calculation. Chem. Phys. Lett. 109, 412415.CrossRefGoogle Scholar
Palumbo, M., Capasso, L., Palu, G. & Magno, S. (1984). DNA-binding of watersoluble furocoumarins: a thermodynamic and conformational approach to understanding different biological effects. Nucl. Acids. Res. 12, 85678578.CrossRefGoogle ScholarPubMed
Peterlin, A. (1938). Über die Viskosität von Verdünnten Lösungen und Suspensionen in Abhängigkeit von der Teilchenform. Z. Phys. 111, 232263.CrossRefGoogle Scholar
Peterlin, A. (1963). Mean dimensions of macromolecular coil in laminar flow. J. chem. Phys. 39, 224229.CrossRefGoogle Scholar
Peterlin, A. & Stuart, H. A. (1939). Zur Theorie de Stromungsdoppelbrechung von Kolloiden und grossen Molekülen in Lösung. Z. Phys. 112, 119.CrossRefGoogle Scholar
Petke, J. D., Maggiora, G. M. & Christoffersen, R. E. (1990). Ab initio configuration interaction and random phase approximation calculations of the excited singlet and triple states of adenine and guanine. J. Am. Chem. Soc. 112, 54525460.CrossRefGoogle Scholar
Philpott, M. R. (1973). Some modern aspects of exciton theory. Adv. chem. Phys. 23, 227341.CrossRefGoogle Scholar
Pilet, J. & Brahms, J. (1973). Investigation of DNA structural changes by infrared spectroscopy. Biopolymers 12, 387403.CrossRefGoogle Scholar
Pohl, F. M. & Jovin, T. M. (1972). Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with ply(dG–dC). J. molec. Biol. 67, 375396.CrossRefGoogle Scholar
Pohle, W. (1990). Utility of infrared spectroscopy for the study of DNA complexes. Studia biophysica. 137, 141151.Google Scholar
Pohle, W., Bohl, M., Flemming, J. & Böhlig, H. (1990). Subsidiary hydrogen bonding of intercalated anthraquinonic anticancer drugs to DNA phosphate. Biophys. Chem. 35, 213226.CrossRefGoogle ScholarPubMed
Pohle, W. & Fritzsche, H. (1976). Infrared dichroism of the DNA–caffeine complex. A new method for determination of the ligand orientation. Nucleic Acids Res. 3, 33313335.CrossRefGoogle ScholarPubMed
Pohle, W. & Fritzsche, H. (1984). Restriction on DNA conformational flexibility induced by antibiotics and amino compounds. Studia biophysica 104, 300308.Google Scholar
Pohle, W. & Fritzsche, H. (1990). Infrared spectroscopy as a tool for investigations of DNA structure and DNA-ligand interactions. J. molec. Struct. 219, 341346.CrossRefGoogle Scholar
Pohle, W., Fritzsche, H. & Zhurkin, V. B. (1986). The phosphate geometry in ordered nucleic acid structures: are the results of infrared linear dichroism and X-ray fiber diffraction really incompatible? Comments mol. cell. Biophys. 3, 179194.Google Scholar
Pohle, W. & Raim, T. (1989). Complementarity of infrared linear dichroism and X-ray diffraction analysis as demonstrated by the study of a DNA–drug complex. Biomed. biochim. Ada 48, 377386.Google Scholar
Pohle, W., Zhurkin, V. B. & Fritzsche, H. (1984). The DNA phosphate orientation. Infrared data and energetically favorable structures. Biopolymers 23, 26032622.CrossRefGoogle ScholarPubMed
Porschke, D. (1985). The mechanism of ion polarization along DNA double helices. Biophys. Chem. 22, 237247.CrossRefGoogle ScholarPubMed
Porschke, D., Hillen, W. & Takahashi, M. (1984). The change of DNA structure by specific binding of the cAMP receptor protein from rotation diffusion and dichroism measurements. EMBO J. 3, 28732878.CrossRefGoogle ScholarPubMed
Porschke, D., Norbert, G. & Hillen, W. (1982). Structure of the complex between lac repressor headpiece and operator DNA from measurements of the orientation relaxation and the electric dichroism. Nucleic Acids Res. 10, 37913802.CrossRefGoogle ScholarPubMed
Porschke, D. & Obst, A. (1991). An electric field jump apparatus with ns time resolution for electro-optical measurements at physiological salt concentrations. Rev. Sci. Instrum. 62, 818.CrossRefGoogle Scholar
Porschke, D., Tovar, K. & Antosiewicz, J. (1988). Structure of the tet repressor and tet repressor–operator complexes in solution from electrooptical measurements and hydrodynamic simulations. Biochemistry 27, 46744679.CrossRefGoogle ScholarPubMed
Porschke, D., Zacharias, W. & Wells, R. D. (1987). B–Z DNA junctions are neither highly flexible nor strongly bent. Biopolymers 26, 19711974.CrossRefGoogle ScholarPubMed
Premilat, S. & Albiser, G. (1983). Conformations of A-DNA and B-DNA in agreement with fibre X-ray and infrared dichroism. Nucleic Acids Res. 11, 1897.CrossRefGoogle ScholarPubMed
Premilat, S. & Albiser, G. (1984). Conformations of C-DNA in agreement with fiber X-ray and infrared dichroism, J. biomol. struct. Dyn. 2, 607.CrossRefGoogle ScholarPubMed
Premilat, S. & Albiser, G. (1986). DNA models for A, B, C and D conformations related to fiber X-ray, infrared and NMR measurements. J. biomol. struct. Dyn. 3, 1033.CrossRefGoogle Scholar
Raim, T. & Pohle, W. (1986). X-ray diffraction and infrared linear dichroism of DNA–violamycin B1 complexes. Molec. Biol. 20, 13131320.Google Scholar
Ramstein, J., Houssier, C. & Leng, M. (1973). Electro-optical properties of nucleic acids and nucleo-proteins. IV. Influence of base composition and methylation on the properties of DNA and DNA–proflavine complexes. Biochim. biophys. Ada 335, 5468.CrossRefGoogle Scholar
Rau, D. C. & Charney, E. (1983). Electric dichroism of DNA. Influence of the ionic environment on the electric polarizability. Biophys. Chem. 17, 3550.CrossRefGoogle ScholarPubMed
Rau, D. C., Gellert, M., Thoma, F. & Maxwell, A. (1987). Structure of the DNA gyrase–DNA complex as revealed by transient electric dichroism. J. molec. Biol. 193, 555569.CrossRefGoogle ScholarPubMed
Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure of the nucleosome core particle at 7 A° resolution. Nature, Lond. 311, 532.CrossRefGoogle ScholarPubMed
Rill, R. L. (1972). The linear dichroism of oriented helical and superhelical polymers. Biopolymers 11, 19291941.CrossRefGoogle ScholarPubMed
Rill, R. & Van Holde, K. E. (1974). Electric dichroism of chromatin. J. molec. Biol. 83, 459471.CrossRefGoogle ScholarPubMed
Rizzo, V. & Schellman, J. A. (1981). Flow dichroism of T7 DNA as a function of salt concentration. Biopolymers 20, 21432163.CrossRefGoogle ScholarPubMed
Rizzo, V. & Schellman, J. A. (1984). Matrix-method calculation of linear and circular dichroism spectra of nucleic acids and polynucleotides. Biopolymers 23, 435470.CrossRefGoogle ScholarPubMed
Roca, A. I. & Cox, M. M. (1990). The RecA protein: structure and function. Biochem. molec. Biol. 25, 415456.Google ScholarPubMed
Roche, C. J., Jeffrey, A. M., Mao, B., Alfano, A., Kim, S. K., Ibanez, V. & Geacintov, N. E. (1991). Dependence of conformations of benzo[a]pyrene diol epoxide-DNA adducts derived from stereoisomers of different tumorigenicities on base sequence. Chem. Res. Toxicol. 4, 311317.CrossRefGoogle Scholar
Roche, J., Marion, C., Gorka, C., Roux, B. & Lawrence, J.-J. (1984). Electric birefringence of chromatin reconstituted with various histone H1 subfractions. Biochem. biophys. Res. Commun. 121, 530538.CrossRefGoogle ScholarPubMed
Rothschild, K. J., Rosen, K. M. & Clark, N. A. (1980). Biophys. J. 31, 45.CrossRefGoogle Scholar
Rubin, R., Bortner, C., Hsieh, C. H. & Griffith, J. (1988). An approach to the analysis of DNA curvature by computer modelling and electron microscopy. UCLA Symp. Mol. Cell Biol., N.S. 83, 711.Google Scholar
Rupprecht, A. (1963). Preparation of oriented DNA in large amounts. Biochem. biophys. Res. Commun. 12, 163168.CrossRefGoogle ScholarPubMed
Rupprecht, A. & Fritzsche, H. (1985). Preparation of thin films of oriented DNA and DNA–ligand complexes suitable for optical studies by a modification of the wetspinning method. Spectros. Int. J. 4, 118.Google Scholar
Rouse, P. E. Jr (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. chem. Phys. 21, 12721280.CrossRefGoogle Scholar
Sackmann, E. & Möhwald, H. (1973). On optical measurements in liquid crystals. J. chem. Phys. 58, 54075416.CrossRefGoogle Scholar
Saenger, W. (1983). Principles of Nucleic Acid Structure. Springer-Verlag: Berlin.Google Scholar
Samori, B. (1983). Applications of the modulated liquid crystal-linear dichroism (l.c.–l.d.) to spectro- and stereo-chemical problems – Part 31. Mol. Liq. Cryst. 98, 385397.CrossRefGoogle Scholar
Samori, B. (1989). Dichroic techniques. Studies of interactions of nucleic acids with drugs. Spectr. inorg. Bioactivators, pp. 417438.Google Scholar
Samori, B., Rossi, A., Pellerano, I. D., Marconi, G., Valentini, L., Gioia, B. & Vigevani, A. (1987). Interactions between drugs and nucleic acids. I. Dichroic studies of doxorubicin, daunorubicin, and their basic chromophore, quinizarin. J. chem. Soc. 2, 14191426.Google Scholar
Sauer, K. (1965). Molecular orientation in quantasomes. III. A flow dichroism apparatus and its application to the study of the structure of spinach quantasomes. Biophys. J. 5, 337348.CrossRefGoogle Scholar
Sayers, Z. (1988). Synchroton X-ray scattering studies of the chromatin fibre structure. Topics Current Chem. 145, 203232.CrossRefGoogle Scholar
Schachter, E. W., Bendet, I. J. & Lauffer, M. A. (1966). Orientation of RNA in tobacco mosaic virus. J. molec. Biol. 22, 165172.CrossRefGoogle Scholar
Schellman, J. (1980). The flexibility of DNA. I. Thermal fluctuations. Biophys. Chem. 11, 321328.CrossRefGoogle ScholarPubMed
Schellman, J. & Jensen, H. P. (1987). Optical spectroscopy of oriented molecules. Chem. Rev. 87, 13591399.CrossRefGoogle Scholar
Scheraga, H. A., Edsall, J. T. & Gadd, J. O. Jr, (1951). Double refraction of flow – numerical evaluation of extinction angle and birefringence as a function of velocity gradient. J. chem. Phys. 19, 11011108.CrossRefGoogle Scholar
Schipper, P. E. & Nordén, B. (1981). Absorption anisotropy of cubic or randomly oriented chromophores in anisotropic solvents. Dispersion-induced linear dichroism (DILD). Chem. Phys. 57, 365376.CrossRefGoogle Scholar
Schipper, P. E. & Nordén, B. (1982). Dispersive contributions to the linear dichroism of chromophores oriented by association to biopolymers or in anisotropic solvents: associate-induced linear dichroism (AILD). J. chem. Phys. 77, 23022308.CrossRefGoogle Scholar
Schipper, P. E., Nordén, B. & Tjerneld, F. (1980). Determination of binding geometry of DNA-adduct systems through induced circular dichroism. Chem. Phys. Lett. 70, 1721.CrossRefGoogle Scholar
Sen, D., Mitra, S. & Crothers, D. M. (1986). Higher order structure of chromatin: evidence from photochemically detected linear dichroism. Biochemistry 25, 34413447.CrossRefGoogle ScholarPubMed
Shimada, J. & Yamakawa, H. (1985). Statistical mechanics of DNA topoisomers. The helical worm-like chain. J. molec. Biol. 184, 319329.CrossRefGoogle ScholarPubMed
Shindo, Y. & Ohmi, Y. (1985). Problems of CD spectrometers. 3. Critical comments on liquid crystal induced circular dichroism. J. Am. Chem. Soc. 107, 9197.CrossRefGoogle Scholar
Shindo, Y. & Takigaura, R. (1984). An improved highly sensitive instrument for measuring optical birefringence. Polym. Commun. 25, 378381.Google Scholar
Simpson, R. T. & Stafford, D. W. (1983). Structural features of a phased nucleosomal core particle. Proc. natn. Acad. Sci. U.S.A. 80, 5155.CrossRefGoogle Scholar
Smith, G. R., Amundsen, S. K., Chaudhury, A. M., Cheng, K. C., Ponticelli, A. S., Roberts, C. M., Schultz, D. W. & Taylor, A. F. (1984). Roles of RecBC enzyme and chi sites in homologous recombination. Cold Spring Harb. Symp. quant. Biol. 49, 485495.CrossRefGoogle ScholarPubMed
Song, L. & Schurr, M. (1990). Dynamic bending rigidity of DNA. Biopolymers 30, 229237.CrossRefGoogle ScholarPubMed
Sprecher, C. A. & Johnson, W. C. (1977). Circular dichroism of nucleic acid monomers. Biopolymers 16, 22432264.CrossRefGoogle ScholarPubMed
Stasiak, A. & Di Capua, E. (1982). The helicity of DNA in complexes with RecA protein. Nature, Lond. 299, 185186.CrossRefGoogle ScholarPubMed
Stewart, R. & Davidson, N. (1963). Polarized absorption spectra of purines and pyrimidines. J. chem. Phys. 39, 255266.CrossRefGoogle ScholarPubMed
Stigter, D. (1978). Electrophoresis of highly charged colloidal cylinders univalent salt solutions. 2. Random orientation in external field and application to polyelectrolytes. J. phys. Chem. 82, 14241429.CrossRefGoogle Scholar
Stigter, D. (1991). Shielding effects of small ions in gel electrophoresis of DNA. (Manuscript in preparation.)CrossRefGoogle Scholar
Straty, G. C., Hanley, H. J. M. & Glinka, C. J. (1990). Shearing apparatus for neutron scattering studies on fluids: preliminary results for colloidal suspensions. J. Statist. Phys. 62, 1015.CrossRefGoogle Scholar
Sturm, J. & Weill, G. (1989). Direct observation of DNA chain orientation and relaxation by electric birefringence: implications for the mechanism of separation during pulsed-field gel electrophoresis. Phys. Rev. Letters 62, 14841487.CrossRefGoogle ScholarPubMed
Sutherland, J. C. & Griffin, K. (1984). Magnetic circular dichroism of adenine, hypoxanthine and guanosine 5′-diphosphate to 180 nm. Biopolymers 23, 27152724.CrossRefGoogle ScholarPubMed
Sutherland, G. B. B. M. & Tsuboi, M. (1957). The infra-red spectrum and molecular configuration of sodium deoxyribonucleate. Proc. R. Soc. Lond. 223, 446463.Google Scholar
Swenberg, C. E., Carberry, S. E. & Geacintov, N. E. (1990). Linear dichroism characteristics of ethidium- and proflavine-supercoiled DNA complexes. Biopolymers 29, 17351744.CrossRefGoogle ScholarPubMed
Taillandier, E., Fort, L., Liquier, J., Couppez, M. & Sautiére, P. (1984 b). Role of the protein alpha helixes in the histone–DNA interactions studied by vibrational spectroscopy. Biochemistry 23, 26442650.CrossRefGoogle ScholarPubMed
Taillandier, E., Liquier, J. & Taboury, J. A. (1985). Infrared spectral studies of DNA conformations. Adv. Infrared Raman Spectrosc. 12, 65.Google Scholar
Taillandier, E., Liquier, J., Taboury, J. & Ghomi, M. (1984 a). Structural transitions in DNA. A, B, Z studied by IR spectroscopy. Spectroscopy of Biological Molecules, NATO ASI Series (ed. Sandorfy, C. and Theophanides, T.), pp. 171189. Reidel: Dordrecht.CrossRefGoogle Scholar
Taillandier, E., Taboury, J., Liquier, J. & Gadenne, M. C. (1979). Particular structural role of H1 in complexes with DNA and comparison with H2A– and H4–DNA complexes investigated by IR linear dichroism. Biopolymers 18, 18771888.CrossRefGoogle ScholarPubMed
Takahashi, M. (1989). Analysis of DNA-RecA protein interactions involving the protein self-association reaction. J. biol. Chem. 264, 288295.CrossRefGoogle ScholarPubMed
Takahashi, M., Kubista, M. & Nordén, B. (1989 a). Binding stoichiometry and structure of RecA–DNA complexes studied by flow linear dichroism and fluorescence spectroscopy. J. molec. Biol. 205, 137147.CrossRefGoogle ScholarPubMed
Takahashi, M., Kubista, M. & Nordén, B. (1989 b). Binding of RecA protein to Z-form DNA studied by circular and linear dichroism spectroscopy. J. biol. Chem. 264, 85688574.CrossRefGoogle ScholarPubMed
Takahashi, M., Kubista, M. & Nordén, B. (1991). Co-ordination of multiple DNA molecules in RecA fiber evidenced by linear dichroism spectroscopy. Biochimie 73, 219226.CrossRefGoogle ScholarPubMed
Takesada, H., Saito, E., Fujita, H., Suzuki, K. & Wada, A. (1970). Study on the binding nature of acridine orange to DNA by means of flow dichroism. Bull. Chem. Soc. Jap. 43, 181187.CrossRefGoogle Scholar
Taylor, G. I. (1936). Fluid friction between rotating cylinders. I. Torque measurement. Proc. R. Soc. Lond. A 157, 546564.Google Scholar
Theiste, D., Callis, P. R. & Woody, R. W. (1991). Effects of the crystal field on transition moments in 9-ethylguanine. J. Am. Chem. Soc. 113, 32603267.CrossRefGoogle Scholar
Thoma, F., Koller, Th. & Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403427.CrossRefGoogle ScholarPubMed
Thulstrup, E. E. & Eggers, J. H. (1968). Moment directions of the electronic transitions in fluoranthene. Chem. Phys. Lett. 1, 690692.CrossRefGoogle Scholar
Thulstrup, E. W., Michl, J. & Eggers, J. H. (1970). Polarization spectra in stretched polymer sheets. II. Separation of π–π* absorption of symmetrical molecules into components. J. phys. Chem. 74, 38683878.CrossRefGoogle Scholar
Tinoco, I. & Bush, C. A. (1964). The influence of static electric and magnetic fields on the optical properties of polymers. Biopolymers Symp. 1, 235250.Google Scholar
Tinoco, I. Jr & Mickols, W. (1987). Absorption, scattering and imaging of biomolecular structures with polarized light. A. Rev. Biophys. biophys. Chem. 16, 319349.CrossRefGoogle ScholarPubMed
Tjerneld, F., Nordén, B. & Ljunggren, B. (1979). Interaction between DNA and 8-methoxypsoralen studied by linear dichroism. Photochem. Photobiol. 29, 11151118.CrossRefGoogle ScholarPubMed
Tjerneld, F., Nordén, B. & Wallin, H. (1982). Chromatin structure studied by linear dichroism at different salt concentrations. Biopolymers 21, 343358.CrossRefGoogle ScholarPubMed
Torbet, J. & Maret, G. (1981). High-field magnetic birefringence study of the structure of rodlike phages Pf1 and fd in solution. Biopolymers 20, 26572669.CrossRefGoogle ScholarPubMed
Tsuboi, M., Takahashi, S. & Harada, I. (1973). Infrared and Raman spectra of nucleic acids – vibrations in the base residues. In Physico-chemical properties of Nucleic Acids (ed. Duchesne, J.), vol. 2, pp. 92145. London: Academic Press.Google Scholar
Turner, D. H., Tinoco, I. & Maestre, M. (1974). Fluorescence detected circular dichroism. J. Am. Chem. Soc. 96, 43404342.CrossRefGoogle Scholar
Tsvetkov, V. N. (1964). Flow birefringence. In Newer Methods of Polymer Characterization (ed. Ke, B.), pp. 563665. New York: Wiley.Google Scholar
Undeman, O., Lycksell, P.-O., Gräslund, A., Astlind, T., Ehrenberg, A., Jernström, B., Tjerneld, F. & Nordén, B. (1982). Covalent complexes of DNA and two diastereomers of benzo(a)pyrene-7, 8, dihydrodiol-9, io-epoxide studied by fluorescence and linear dichroism. Cancer Res. 43, 18511860.Google Scholar
Van Amerongen, H., Kwa, S. L. S. & Van Grondelle, R. (1990 a). Complex between single-stranded DNA and gene 5 protein of bacteriophage M13 studied with linear dichroism and ultraviolet absorption. J. molec. Biol. 216, 717727.CrossRefGoogle ScholarPubMed
Van Amerongen, H., Kuil, M. E., Scheerhagen, M. A. & Van Grondelle, R. (1990 b). Structure calculations for singe-stranded DNA complexed with the singlestranded DNA binding protein GP32 of bacteriophage T4: a remarkable DNA structure. Biochemistry 29, 56195625.CrossRefGoogle Scholar
Van Amerongen, H., Kuil, M. E., Van Mourik, F. & Van Grondelle, R. (1988). Linear dichroism of the complex between the gene 32 protein of bacteriophage T4 and poly(1, N6-ethenoadenylic acid). J. molec. Biol. 204, 397405.CrossRefGoogle ScholarPubMed
Van Amerongen, H. & Van Grondelle, R. (1989). Orientation of the bases of singlestranded DNA and polynucleotides in complexes formed with the gene 32 protein of bacteriophage T4. A linear dichroism study. J. molec. Biol. 209, 433445.CrossRefGoogle ScholarPubMed
Van Holde, K. E. (1988). Chromatin. New York: Springer-Verlag.Google Scholar
Veal, J. M. & Rill, R. L. (1986). Sequence specificity of DNA cleavage by bis(1, 10phenanthroline) copper(I). Biochemistry 27, 18221827.CrossRefGoogle Scholar
Vigny, P., Blais, J., Ibanez, V. & Geacintov, N. E. (1987). A flow linear dichroism study of the orientation of 4′, 5′-psoralen-DNA photoadducts. Photochem. Photobiol. 45, 601607.CrossRefGoogle ScholarPubMed
Voelter, W., Records, R., Bunnenberg, E. & Djerassi, C. (1968). Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines and nucleosides. J. Am. Chem. Soc. 90, 61636170.CrossRefGoogle ScholarPubMed
Von Muralt, A. L. & Edsall, J. T. (1930). Studies in the physical chemistry of muscle globulin. III. The anisotropy of myosin and the angle of isocline. J. biol. Chem. 89, 315389.CrossRefGoogle Scholar
Wada, A. (1964). Chain regularity and flow dichroism of deoxyribonucleic acids in solution. Biopolymers 2, 361380.CrossRefGoogle Scholar
Wada, A. (1971). Flow-dichroic spectra of double-stranded RNA. Biopolymers 10, 11531157.CrossRefGoogle ScholarPubMed
Wada, A. (1972). Dichroic spectra of biopolymers oriented by flow. Appl. Spectr. Rev. 6, 130.CrossRefGoogle Scholar
Wada, A. & Kozawa, S. (1964). Instrument for the studies of differential flow dichroism of polymer solutions. J. Polymer Sci. A 2, 853.Google Scholar
Wetzel, R., Buder, R., Schälike, W. & Zirwer, D. (1969). Linearer Dichroismus beig Riesenchromosomen von Chironomus. Chromosoma 26, 201207.CrossRefGoogle Scholar
Widom, J. (1989). Toward a unified model of chromatin folding. A. Rev. Biophys. Chem. 18, 365395.CrossRefGoogle Scholar
Widom, J. & Baldwin, R. L. (1980). Cation-induced toroidal condensation of DNA. Studies with . J. molec. Biol. 144, 431453.CrossRefGoogle ScholarPubMed
Williams, S. P., Athey, L. J., Muglia, L. J., Scappe, R. S., Gough, A. H. & Langmore, J. P. (1986 b). Chromatin fibers are left-handed double helices with diameters and mass per unit length that depend on linker length. Biophys. J. Biophys. Soc. 49, 233248.CrossRefGoogle ScholarPubMed
Williams, A. L., Cheong, C., Tinoco, I. & Clark, L. B. (1986 a). Vacuum ultraviolet circular dichroism as an indicator of helical handedness in nucleic acids. Nucl. Acids Res. 14, 66496658.CrossRefGoogle ScholarPubMed
Williams, S. A., Renn, C. N. & Callis, P. R. (1987). Polarized fluorescence of thymine in neutral aqueous solution at room temperature: evidence for interference from the anion and for the ππ* nature of the fluorescence. J. phys. Chem. 91, 27302734.CrossRefGoogle Scholar
Wilson, R. (1978). The dichroic tensor of flexible helices in a magnetic field. Biopolymers 17, 18111814.CrossRefGoogle Scholar
Wilson, R. W. & Callis, P. R. (1976). Excitons, energy transfer, and charge resonance in excited dinucleotides and polynucleotides. A photoselection study. J. phys. Chem. 80, 22802288.CrossRefGoogle Scholar
Wilson, R. W. & Schellman, J. A. (1977). The dichroic tensor of flexible molecules. Biopolymers 16, 21432165.CrossRefGoogle Scholar
Wilson, R. W. & Schellman, J. A. (1978). The flow linear dichroism of DNA: comparison with the bead-spring theory. Biopolymers 17, 12351248.CrossRefGoogle ScholarPubMed
Wilson, W. D., Tanious, F. A., Barton, H. J., Jones, R. L., Fox, K., Wydra, R. L. & Strekowski, L. (1990). DNA sequence dependent binding modes of 4′, 6diamidino-2-phenylindole, DAPI. Biochemistry 29, 84528461.CrossRefGoogle Scholar
Wirth, M., Buchardt, O., Koch, T., Nielsen, P. E. & Nordén, B. (1988). Interactions between DNA and mono-, bis-, tris-, tetrakis- and hexakis (aminoacridines). A linear and circular dichroism, electric orientation relaxation, viscometry, and equilibrium study. J. Am. Chem. Soc. 110, 932939.CrossRefGoogle Scholar
Woollins, J. D. & Kelly, P. F. (1985). The preparation and properties of compounds containing Pt(III). Coord. Chem. Rev. 65, 115140.CrossRefGoogle Scholar
Wu, H. M., Dattagupta, N. & Crothers, D. M. (1981). Solution structural studies of the A and Z forms of DNA. Proc. natn. Acad. Sci. U.S.A. 78, 68086811.CrossRefGoogle ScholarPubMed
Yabuki, H., Dattagupta, N. & Crothers, D. M. (1982). Orientation of nucleosomes in the thirty-nanometer chromatin fiber. Biochemistry 21, 50155020.CrossRefGoogle ScholarPubMed
Yamagida, M., Hiraoka, Y. & Katsura, I. (1982). Dynamic behaviors of DNA molecules in solution studied by fluorescence microscopy. Cold Spring Harb. Symp. quant. Biol. 47, 177187.CrossRefGoogle Scholar
Yamagishi, A. (1984). Electric dichroism evidence for stereospecific binding of optically active tris chelated complexes to DNA. J. phys. Chem. 88, 57095713.CrossRefGoogle Scholar
Yamakawa, H. & Fujii, M. (1974). Intrinsic viscosity of wormlike chains. Determination of the shift factor. Macromolecules 7 128135.CrossRefGoogle ScholarPubMed
Yamaoka, K. (1989). Electric dichroism and birefringence for determining the conformation of nucleic acids in solution. Seibutsu Butsuri 29, 144149.CrossRefGoogle Scholar
Yoshida, H., Swenberg, C. E. & Geacintov, N. E. (1987). Kinetic flow dichroism study of conformational changes in supercoiled DNA induced by ethidium bromide and noncovalent and covalent binding of benzo[α]pyrene diol epoxide. Biochemistry 26, 13511358.CrossRefGoogle Scholar
Yu, X. & Egelman, E. H. (1990). Image analysis reveals that Escherichia coli RecA protein consists of two domains. Biophys. J. 57, 555566.CrossRefGoogle ScholarPubMed
Zaloudek, F., Novros, J. S. & Clark, L. B. (1985). The electronic spectrum of cytosine. J. Am. Chem. Soc. 107, 73447351.CrossRefGoogle Scholar
Zbinden, R. (1964). Infrared Spectroscopy of High Polymers. Academic Press.Google Scholar
Zegar, I., Gráslund, A., Bergman, J., Eriksson, M. & Nordén, B. (1989). Interaction of ellipticine and an indolo[2, 3b]-quinoxaline derivative with DNA and synthetic polynucleotides. Chem.–Biol. Interactions 72, 277293.CrossRefGoogle Scholar
Zehfus, M. H. & Johnson, W. C. Jr (1984). Conformation of P-form DNA. Biopolymers 23, 12691281.CrossRefGoogle ScholarPubMed
Zirwer, D., Buder, E., Schalike, W. & Wetzel, R. (1970). Linear dichroitische Untersuchungen zur DNA-organisation in Spermiendköpfen von Locusta migratoria L. J. Cell Biology 45, 431434.CrossRefGoogle Scholar
Zlotnick, A., Mitchell, R. S. & Brenner, S. L. (1990). recA protein filaments bind two molecules of single-stranded DNA with off rates regulated by nucleotide cofactor. J. biol. Chem. 265, 1705017054.CrossRefGoogle ScholarPubMed