Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T06:32:28.332Z Has data issue: false hasContentIssue false

Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems

Published online by Cambridge University Press:  17 March 2009

D. A. Haydon
Affiliation:
Physiological Laboratory, University of Cambridge, Downing Street, Cambridge
S. B. Hladky
Affiliation:
Physiological Laboratory, University of Cambridge, Downing Street, Cambridge

Extract

There are now well-established examples of carriers and pores which facilitate the transfer of ions across thin lipid membranes. In the absence of such agents, lipid bilayer membranes are extremely impermeable to the common inorganic ions. Thus, the conductance of a pure lecithin + decane or glyceryl mono-oleate + decane membrane in M/10 NaCl is less than10−9Ω −1 cm−2. However, on the addition of small lipid-soluble molecules such as valinomycin, or surface-active polypeptides such as gramicidin A, the conductance may become so high (> 10−1 ω−l cm−2) that the resistance of the membrane merges into that of the aqueous phase. This review is concerned with the extent to which we now understand how these added substances transfer ions across lipid membranes. Attention has been concentrated on the simpler systems, i.e. the lipid-soluble ions, the 1–1 carriets, a simple pore and, with some loss of simplicity, a substance which prodeces interacting pores. Only molecules of known primary structure are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, A. E. & Schulman, J. H. (1937). Orientation in films of long-chain esters. Proc. R. Soc. A 161, 115–27.Google Scholar
Andrews, D. M. & Haydon, D. A. (1968). Electron microscope studies of lipid bilayer membranes. J. molec. Biol. 32, 149–50.CrossRefGoogle ScholarPubMed
Andrews, D. M., Manev, E. D. & haydon, D. A. (1970). Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces. Special Discuss. Faraday Soc. no. 1, pp. 46–56.CrossRefGoogle Scholar
Ashton, R. & Steinrauf, L. K. (1970). Thermodynamic consideration of the ion transporting antibiotics. J. molec. Biol. 49, 547–56.CrossRefGoogle ScholarPubMed
Babakov, A. V., Dernin, V. V., Sokolov, S. D. & Sotnikov, P. S. (1968). Effect of metal ions on the conductivity and current—voltage characteristics of bimolecular membranes with tetrachlorotrifluoromethylbenzimidazole. Biophysics 13, 1302–4.Google Scholar
Bangham, A. D. & Papahadjopoulos, D. (1966). Biophysical properties of phospholipids. I. Interaction of phosphatidylserine monolayers with metal ions. Biochim. biophys. Acta 126, 181–4.CrossRefGoogle ScholarPubMed
Bran, R. C., shepherd, W. C., Chan, H. & Eichner, J. (1969). Discrete conductance fluctuations in lipid bilayer protein membranes. J. gen. Physiol. 53, 741–57.Google Scholar
Bell, G. M., Mingins, J. & Levine, S. (1966). Cell and hexagonal lattice models for adsorbed ions in electrical double layer theory. Trans. Faraday Soc. 62, 949–59.CrossRefGoogle Scholar
Carslaw, H. S. & Jaeger, J. C. (1969). Conduction of Heat in Solids. Oxord University Press.Google Scholar
Chandler, W. K., Hodgkin, A. L. & Meves, H. (1965). The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol., Lond. 180, 821–36.CrossRefGoogle ScholarPubMed
Chapman, D., Cherry, R. J., Finer, E. G., Hauser, H., Phillips, M. C., Shipley, G. G. & McMullen, A. I. (1969). Physical studies of phospholipid/alamethicin interactions. Nature, Lond. 224, 692–4.CrossRefGoogle Scholar
Chappell, J. B. & crofts, A. R. (1965). Gramicidin and ion transport in isolated liver mitochondria. Biochem. J. 95, 393402.CrossRefGoogle ScholarPubMed
Ciani, S., Eisenman, G. & Szabo, G. (1969). A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes. J. Membrane Biol. I, 136.CrossRefGoogle Scholar
Cook, G. M. W., Redwood, W. R., Taylor, A. R. & Haydon, D. A. (1968). The molecular composition of black hydrocarbon films in aqueous solutions. Kolloidzeitschrift 227, 2837.Google Scholar
Dobler, M., Dunitz, J. D. & Krajewski, J. (1969). Structure of the K+ complex with enniatin B, a macrocyclic antibiotic with K+ transport properties. J. molec Biol. 42, 603–6.CrossRefGoogle Scholar
Donnan, F. G. (1911). Theorie derMembrangleichgewichte und Membranepotentiale bei Vorhandensein von nicht dialysierenden Electrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z. Elektrochem. 17, 572–81.Google Scholar
Ehrenstein, G., Lecar, H. & Nossal, R. (1970). The nature of the negative resistance in bimolecular lipid membranes containing excitability- inducing material. J. gen. Physiol. 55, 119–33.CrossRefGoogle ScholarPubMed
Eisenman, G. (1962). Cation selective glass electrodes and their mode of operation. Biophys. J. 2, no. 2, Pt. 2, 259323.CrossRefGoogle ScholarPubMed
Eisenman, G., Ciani, S. M. & Szabo, G. (1968). Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions. Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1289–304.Google ScholarPubMed
Eisenman, G., Ciani, S. & Szabo, G. (1969). The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J. Membrane Biol. 1, 294345.CrossRefGoogle ScholarPubMed
Eisenamn, G., Szabo, G., McLaughlin, S. G. A. & Ciani, S. M. (1971). Molecular basis for the action of macrocyclic antibiotics on membranes. In Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. University of Granada. (In the Press.)Google Scholar
Everitt, C. T., Redwood, W. R. & Haydon, D. A. (1969). Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J. theor. Biol. 22, 2032.CrossRefGoogle ScholarPubMed
Fettiplace, R., Andrews, D. M. & Haydon, D. A. (1971). The thickness, composition and structure of some lipid bilayers and natural membranes. J. Membrane Biol. 5, 277–96.CrossRefGoogle ScholarPubMed
Finkelstein, A. & Cass, A. (1968). Permeability and electrical properties of thin lipid membranes. J. gen. Physiol. 52, 145–73 s.CrossRefGoogle ScholarPubMed
Finkelstein, A. (1970). Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes. Biochim. biophys. Acta 205, 16.CrossRefGoogle ScholarPubMed
Gilbert, D. L. & Ehrenstein, G. (1969). Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys. J. 9, 447–63.CrossRefGoogle ScholarPubMed
Goldman, D. E. (1944). Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 3760.Google Scholar
Goldup, A., Ohki, S. & Daniell, J. F. (1970). Black lipid films. Recent Frog. Surf Sci. 3, 193260.Google Scholar
Goodall, M. C. (1970 a). Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. I. Tyrocidine B. Biochim. biophys. Acta 203, 2833.CrossRefGoogle ScholarPubMed
Goodall, M. C. (1970 b). Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. II. Kinetics of tyrocidine B. Biochim. biophys. Acta 219, 2836.CrossRefGoogle ScholarPubMed
Goodall, M. C. (1970c). Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. III. Gramicidins ‘A’ and ‘S’, and lipid specificity. Biochim. biophys. Acta 219, 471–8.CrossRefGoogle Scholar
Goodall, M. C. (1971). Thickness dependence in the action of gramicidin A on lipid bilayers. Archs Biochem. Biophys. 147, 129–35.CrossRefGoogle ScholarPubMed
Gordon, L. G. M. & Haydon, D. A. (1972). The unit conductance channel of alamethicin. Biochem. biophys. Acta 255, 1014–18.CrossRefGoogle Scholar
Grell, E., Funck, Th. & Eggers, F. (1971). Dynamic properties and membrane activity of ion specific antibiotics. In Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. University of Granada. (In the Press.)Google Scholar
Guggenheim, E. A. (1929). The conceptions of electrical potential difference between two phases and the individual activities of ions. J. phys. Chem., Ithaca 33, 842–9.CrossRefGoogle Scholar
Gurney, R. W. (1953). Ionic Processes in Solution. New York: Dover.Google Scholar
Harold, F. M. (1970). Antimicrobial agents and membrane function. Adv. Microb. Physiol. 4, 45104.CrossRefGoogle Scholar
Harris, E. J. & Pressman, B. C. (1967). Obligate cation exchanges in red cells. Nature, Lond. 216, 918–20.Google Scholar
Hashimoto, M. (1968). Effect of surface active agents and some molecules on the electrical properties of lipid membranes. Bull. chem. Soc. (Japan), 41, 2823–8.CrossRefGoogle ScholarPubMed
Hauser, H., Finer, E. G. & Chapman, D. (1970). Nuclear magnetic resonance studies of the polypeptide alamethicin and its interaction with phospholipids. J. molec. Biol. 53, 419–33.CrossRefGoogle ScholarPubMed
Haydon, D. A. (1962). Surface potentials and molecular structure at hydrocarbon/water interfaces. Kolloidzeitschrift 185, 148–54.Google Scholar
Haydon, D. A. (1964). The electrical double layer and electrokinetic phenomena. Recent Frog. Surf. Sci. I, 94158.Google Scholar
Haydon, D. A. (1968). Properties of lipid bilayers at a water–water interface. J. Am. Oil Chem. Soc. 45, 230–40.CrossRefGoogle Scholar
Haydon, D. A. (1969). Some recent developments in the study of bimolecular lipid films. In The Molecular Basis of Membrane Function (ed. Tosteson, D. C.), pp. 111–32. Prentice Hall Inc.Google Scholar
Haydon, D. A. (1970). A critique of the black lipid film as a membrane model. In Permeability and Function of Biological Membranes (ed. Bolis, L., Katchalsky, A., Keynes, R. D., Loewenstein, W. R. and Pethica, B. A.), pp. 185–94. Amsterdam: North Holland.Google Scholar
Haydon, D. A. (1970 a). The organization and permeability of artificial lipid membranes. In Membranes and Ion Transport, vol. 1 (ed. Bittar, E. E.), pp. 6492. London: Wiley—Interscience.Google Scholar
Haydon, D. A. & Taylor, F. H. (1960). On adsorption at the oil/water interface and the calculation of electrical potentials in the aqueous surface phase. I. Neutral molecules and a simplified treatment for ions. Phil. Trans. R. Soc. A 252, 225–48.Google Scholar
Henderson, P. J. F., McGivan, J. D. & Chappell, J. B. (1969). The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. Biochem. J. III, 521–35.Google Scholar
Hladky, S. B. (1971). On the mechanism of ion transport across thin lipid membranes. Fellowship dissertation, Churchill College, Cambridge.Google Scholar
Hladky, S. B. (1972 a). The steady-state theory of the carrier transport of ions. (In preparation.)Google Scholar
Hladky, S. B. (1972 b). The steady-state kinetics of the nonactin induced conductance of a thin lipid membrane. (In preparation.)Google Scholar
Hladky, S. B. & Haydon, D. A. (1970). Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature, Lond. 225, 451–3.CrossRefGoogle ScholarPubMed
Hladky, S. B. & Haydon, D. A. (1971). Studies of the unit conductance channel of gramicidin A. In Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. University of Granada. (In the Press.)Google Scholar
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. (Submitted for publication.)CrossRefGoogle Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., Lond. 117, 500–44.CrossRefGoogle ScholarPubMed
Hodgman, C. D. (ed.) (1961). Handbook of Chemistry and Physics, pp. 211–16. Cleveland, Ohio: Chemical Rubber Publishing Co.Google Scholar
Hopfer, U., Lehninger, A. L. & Thompson, T. E. (1968). Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. natn. Acad. Sci. U.S.A. 59, 484–90.Google Scholar
Ivanov, V. T., Laine, I. A., Abdulaev, N. D., Senyavina, L. B., Popov, E. M., Ovchinnikov, Yu. A. & Shemyakin, M. M. (1969). The physicochemical basis of the functioning of biological membranes: The conformation of valinomycin and its K+ complex in solution. Biochem. biophys. Res. Commun. 34, 803–II.CrossRefGoogle ScholarPubMed
Ivanov, V. T., Laine, I. A., Adbullaev, N. D., Pletnev, V. Z., Lipkind, G. M., Arkhipova, S. F., Senyavina, L. B., Meshcheryakova, E. N., Popov, E. M., Bystrov, V. F. & Ovchinnikov, Yu. A. (1971). Conformational states of valinomycin and its complexes with the cations of alkalimetals in solutions. Khim. Prir. Soedin 3, 221–46.Google Scholar
Jackson, J. D. (1962). Classical Electrodynamics. New York and London: Wiley.Google Scholar
Ketterer, B., Neumcke, B. & Läuger, P. (1971). Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membrane Biol. 5, 225–45.CrossRefGoogle ScholarPubMed
Kilbourn, B. T., Dunitz, J. D., Pioda, L. A. R. & Simon, W. (1967). Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J. molec. Biol. 30, 559–63.Google Scholar
Kinsky, S. C. (1970). Antibiotic interaction with model membranes. A. Rev. Pharmac. 10, 119–42.Google Scholar
Krasne, S., Eisenman, G. & Szabo, G. (1971). Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science, N.Y. 174, 412–15.CrossRefGoogle ScholarPubMed
Läuger, P. & Srark, G. (1970). Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim. biophys. Acta 211, 458–66.CrossRefGoogle ScholarPubMed
Lea, E. J. A. & Croghan, P. C. (1969). The effect of 2, 4-dinitrophenol on the properties of thin phospholipid films. J. Membrane Biol. 1, 225–37.CrossRefGoogle Scholar
LeBlanc, O. H. Jr (1969). Tetraphenylborate conductance through lipid bilayer membranes. Biochim. biophys. Acta 193, 350360.CrossRefGoogle Scholar
LeBlanc, O. H. Jr (1970). Single ion conductances in lipid bilayers. TPMA3. Abstracts of Biophysical Society 14th Annual Meeting. Baltimore, Maryland.Google Scholar
LeBlanc, O. H. Jr (1971). The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: carbonylcyanide-m-chlorophenylhydrazone. J. Membrane Biol. 4, 227–51.Google Scholar
Liberman, Ye A. (1971). Membranes (ionic permeability, excitability, control). Neurosci. Transl. 15, 6988.Google Scholar
Liberman, Ye. A., Mokova, Y. N., Skulachev, V. P. & Topaly, V. P. (1968). Effect of uncoupling agents of oxidative phosphorylation on bimolecular phospholipid membranes. Biophysics 13, 226–32.Google ScholarPubMed
Liberman, Ye. A., Pronevich, L. A. & Topaly, V. P. (1970). Mechanism of permeability of phospholipid membranes for cations in the presence of antibiotics. Biophysics 15, 639–50.Google Scholar
Liberman, E. A. & Topaly, V. P. (1968 a). Selective transport of ions through bimolecular phospholipid membranes. Biochim. biophys. Acta 163, 125–37.CrossRefGoogle ScholarPubMed
Liberman, Ye. A. & Topaly, V. P. (1968 b). Transfer of ions across bimolecular membranes and classification of uncouplers of oxidative phosphorylation. Biophysics 13,1195–207.Google Scholar
Liberman, Ye. A. & Topaly, V. P. (1969). Permeability of bimolecular phospholipid membranes for fat soluble ions. Biophysics 14, 477–87.Google Scholar
Liberman, E. A., Topaly, V. P. & Silberstein, A. Y. (1970). Charged and neutral ion carriers through bimolecular phospholipid membranes. Biochim. biophys. Acta 196, 221–34.Google Scholar
Liberman, Ye. A., Topaly, V. P. & Tsofina, L. M. (1970). Comparison of the properties of the bimolecular phospholipid membranes from the brain, mitochondria and bacteria. Biophysics 15, 6774.Google Scholar
McLaughlin, S. G. A., Szabo, G., Eisenman, G. & Ciani, S. M. (1970). Surface charge and the conductance of phospholipid membranes. Proc. natn. Acad. Sci. U.S.A. 67, 1268–75.Google Scholar
McLaughilin, S. G. A., Szabo, G. & Eisenman, G. (1971). Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58, 667–87.Google Scholar
McMullen, A. I., Marlbourough, D. I. & Bayley, P. M. (1971). The conformation of alamethicin. FEBS Letters 16, 278–80.Google Scholar
Markin, V. S., Krishtalik, L. I., Liberman, Ye. A. & Topaly, V. P. (1969). Mechanism of conductivity of artificial phospholipid membranes in presence of ion carriers. Biophysics 14, 272–82.Google ScholarPubMed
Markin, V. S., Pastushenko, V. F., Krishtalik, L. I., Liberman, Ye. A. & Topaly, V. P. (1969). Membrane potential and short circuit current in artificial phospholipid membranes in the presence of agents uncoupling oxidative phosphorylation. Biophysics 14, 487500.Google Scholar
Mayers, D. F. & Urry, D. W. (1972). The valinomycin–cation complex: conformational energy aspects and ion selectivity. J. Am. chem. Soc. 94, 7781Google Scholar
Meyer, C. E. & Reusser, F. (1967). A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia 23, 85–6.Google Scholar
Mueller, P. & Rudin, D. O. (1967). Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. biophys. Res. Commun. 26, 398404.Google Scholar
Mueller, P. & Rudin, D. O. (1968). Action potentials induced in bimolecular lipid membranes. Nature, Lond. 217, 713–19.CrossRefGoogle Scholar
Mueller, P. & Rudin, D. O. (1969). Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions. Curr. Top Bioenerg. 3, 157249.Google Scholar
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, Lond. 194, 979–81.CrossRefGoogle ScholarPubMed
Myers, V. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. (To be published.)CrossRefGoogle Scholar
Neumcke, B. (1970). Ion flux across lipid bilayer membranes with charged surfaces. Biophysik 6, 231–40.CrossRefGoogle ScholarPubMed
Neumcke, B. (1971). Diffusion polarization at lipid bilayer membranes. Biophysik 7, 95105.CrossRefGoogle ScholarPubMed
Neumcke, B. & Läuger, P. (1969). Non-linear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst—Planck equations. Biophys. J. 9, 1160–70.Google Scholar
Ohnishi, M. & Urry, D. W. (1969). Temperature dependence of amide proton chemical shifts: The secondary structures of gramicidin S and valinomycin. Biochem. biophys. Res. Commun. 36, 194202.CrossRefGoogle ScholarPubMed
Ohnishi, M. & Urry, D. W. (1970). Solution conformation of valinomycinpotassium ion complex. Science, N.Y. 168, 1091–2.Google Scholar
Panofesky, W. K. H. & Phillips, M. (1962). Classical Electricity and Magnetism. Reading, Mass.: Addison-Wesley.Google Scholar
Papahadjopoulos, D. (1968). Surface properties of acidic phospholipids:Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim. biophys. Acta 163, 240–54.Google Scholar
Payne, J. W., Jakes, R. & Hartley, B. S. (1970). The primary structure of alamethicin. Biochem. J. 117, 757–66.CrossRefGoogle ScholarPubMed
Pinkerton, M. & Steinrauf, L. K. (1970). Molecular structure of monovalent metal cation complexes of monensin. J. molec. Biol. 49, 533–46.CrossRefGoogle ScholarPubMed
Pinkerton, M., Steinrauf, L. K. & Dawkins, P. (1969). The molecular structure and some transport properties of valinomycin. Biochem. biophys. Res. Commun. 35, 512–18.Google Scholar
Pioda, L. A. R., Wachter, H. A., Dohner, R. E. & Simon, W. (1967). Komplexe von nonactin und monactin mit natrium-, kalium-, und ammonium-ionen. Helv. chim. Acta 50, 1373–6.Google Scholar
Podleski, T. & Changeux, J. P. (1969). Effects associated with permeability changes caused by gramicidin A in electroplax membrane. Nature, Lond. 221, 541–5.Google Scholar
Pressman, B. C. (1963). Specific inhibitors of energy transfer. In Energy- linked Functions of Mitochondria (ed. Chance, B.), p. 181. New York: Academic Press.Google Scholar
Pressman, B. C. (1965). Induced active transport of ions into mitochondria. Proc. natn. Acad. Sci. U.S.A. 53, 1076–83.Google Scholar
Pressman, B. C. (1968). lonophorous antibiotics as models for biological transport. Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1283–8.Google Scholar
Sarges, R. & Witkop, B. (1964). Formyl, a novel NH2-terminal blocking proup in a naturally occurring peptide. The identity of seco-gramicidin with desformylgramicidin. J. Am. chem. Soc. 86, 1861–2.Google Scholar
Sarges, R. & Witkop, B. (1965). Gramicidin. VIII. The structure of valineand isoleucine gramicidin C. Biochemistry, N.Y. 4, 2491–4.CrossRefGoogle Scholar
Seufert, W. D. (1965). Induced permeability changes in reconstituted cell membrane structure. Nature, Lond. 207, 174–6.CrossRefGoogle ScholarPubMed
Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I. & Ryadova, I. D. (1969). Cyclodepsipeptides as chemical tools for studying ionic transport through membranes. J. Memb. Biol. I, 402–30.Google Scholar
Silman, H. I. & Karlin, A. (1968). Action of antibiotics affecting membrane permeability on the electroplax. Proc. natn. Acad. Sci. U.S.A. 61, 674–9.Google Scholar
Skinner, J. F. & Fuoss, R. M. (1964). Conductance of triisoamylbutylammonium and tetraphenylboride ions in water at 25 °C. J. phys. Chem. 68, 1882–5.Google Scholar
Smythe, W. R. (1939). Static and Dynamic Electricity. NewYork: McGraw Hill.Google Scholar
Stark, G. & Benz, R. (1971). The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. Experimental studies to a previously proposed model. J. Membrane Biol. 5, 133–54.Google Scholar
Stark, G., Ketterer, B., Benz, R. & Läger, P. (1971). The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys. J. II, 981–94.Google Scholar
Steinrauf, L. K., Pinkerton, M. & Chamberlin, J. W. (1968). The structure of nigericin. Biochem. biophys. Res. Commun. 33, 2931.Google Scholar
Szabo, G., Eisenman, G. & Ciani, S. (1969). The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membrane Biol.I, 346–82.CrossRefGoogle Scholar
Szabo, G., Eisenman, G. & Ciani, S. M. (1970). Ion distribution equilibria in bulk phases and the ion transport properties of bilayer membranes produced by neutral macrocyclic antibiotics. In Physical Principles of Biological Membranes (ed. Snell, F., Wolken, J., Iverson, G. J. and Lam, J.), pp. 79133. New York: Gordon and Breach Science Publishers.Google Scholar
Tostenson, D. C. (1968). Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1269–77.Google Scholar
Tosteson, D. C., Andreoli, T. E., Tieffenberg, M. & Cook, P. (1968). The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J. gen. Physiol. 51, 373384s.CrossRefGoogle ScholarPubMed
Urry, D. W. (1971 a). Biomolecular conformation and biological activity. Adv. them. Phys. 21, 581600.Google Scholar
Urry, D. W. (1971 b). The gramicidin A transmembrane channel: A proposed π;(L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672–6.CrossRefGoogle Scholar
Urry, D. W., Goodall, M. C., Glickson, J. D. & Mayers, D. F. (1971). The gramicidin A transmembrane channel: Characteristics of head-to- head dimerized π(L, D) helices. Proc. natn. Acad. Sci. U.S.A. 68, 1907–11.Google Scholar
Vetter, K. J. (1967). Electrochemical Kinetics. London: Academic Press.Google Scholar
Walz, D., Bamberg, E. & Läuger, P. (1969). Non-linear electrical effects in lipid bilayer membranes. I. Ion injection. Biophys. J. 9, 1150–9.Google Scholar
Wipf, H. K., Pache, W., Jordan, P., Zähner, H., Keller-Schierlein, W. & Simon, W. (1969). Mechanism of alkali cation transport in bulk membranes using macrotetralide antibiotics. Biochem. biophys. Res. Commun. 36, 387–93.Google Scholar