Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T03:33:13.875Z Has data issue: false hasContentIssue false

Experimental methods for investigating protein adsorption kinetics at surfaces

Published online by Cambridge University Press:  17 March 2009

Jeremy J. Ramsden
Affiliation:
Department of Biophysical Chemistry, Biocentre of the University, CH-4036 Basle, Switzerland

Extract

The adsorption of proteins at the solid-liquid interface is a process of fundamental importance in nature. Extensive reviews (MacRitchie, 1978; Andrade & Hlady, 1986; Norde, 1986) testify to the strong interest which has been shown in the problem during the past few decades. Norde & Lyklema (1978) have rightly pointed out that protein adsorption is scientifically intriguing; the phenomenology is complicated and includes many presently apparently irreconcilable observations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agranovich, V. M. & Mills, D. L. (1982). Surface Polaritons. Amsterdam: North-Holland.Google Scholar
Alexandrowicz, Z. & Daniel, E. (1963). Sedimentation and diffusion of polyelectrolytes. Biopolymers I, 447471.CrossRefGoogle Scholar
Alvarez, O. & Latorre, R. (1978). Voltage-dependent capacitance in lipid bilayers. Biophys. J. 21, 117.CrossRefGoogle ScholarPubMed
Andrade, J. D. & Hlady, V. L. (1986). Protein adsorption and materials biocompatibility. Adv. Polymer Sci. 79, 163.CrossRefGoogle Scholar
Andrade, J. D., Hlady, V. L. & van Wagenen, R. A. (1984). Effects of plasma protein adsorption on protein conformation and activity. Pure appl. Chem. 56, 13451350.CrossRefGoogle Scholar
Aptel, J. D., Voegel, J. C. & Schmitt, A. (1988). Adsorption kinetics of proteins onto solid surfaces in the limit of interfacial interaction control. Colloids Surf. 29, 359371.CrossRefGoogle Scholar
Artmann, K. (1948). Berechnung der Seitenversetzung des totalrefelktierten Strahles. Ann. Phys. 2, 87102.CrossRefGoogle Scholar
Aspnes, D. E. (1982). Optical properties of thin films. Thin Solid Films 89, 249262.CrossRefGoogle Scholar
Aspnes, D. E. (1985). Recent progress in the nondestructive analysis of surfaces, thin films and interfaces by spectroellipsometry. Appl. Surf. Sci. 22–23, 792803.CrossRefGoogle Scholar
Axelrod, D., Burghardt, T. P. & Thompson, N. L. (1984). total internal reflexion fluorescence. A. Rev. Biophys. Bioengng 13, 247268.CrossRefGoogle Scholar
Azzam, R. M. A. & Bashara, N. M. (1977). Ellipsometry and Polarized Light. Amsterdam: North Holland.Google Scholar
de Baillou, N., Dejardin, P., Schmitt, A. & Brash, J. L. (1984). Fibrinogen dimensions at an interface. J. Colloid Interface Sci. 100, 167174.CrossRefGoogle Scholar
Bard, A. J. & Faulkner, L. R. (1980). Electrochemical Methods. New York: Wiley.Google Scholar
Bartelt, M. C. & Privman, V. (1991). Kinetics of irreversible monolayer and multilayer adsorption. Int. J. mod. Phys. B 5, 28832907.CrossRefGoogle Scholar
Bernabeu, P., de Cesare, A. & Caprani, A. (1989). Kinetics of albumin and fibrinogen adsorption onto a rotating disk electrode. J. electroanal. Chem. 265, 261275.Google Scholar
Berne, B. J. & Pecora, R. (1975). Dynamic Light Scattering. New York: Wiley.Google Scholar
Bloomfield, V., Dalton, W. O. & van Holde, K. E. (1967). Frictional coefficients of multisubunit structures. Biopolymers 5, 135148.CrossRefGoogle ScholarPubMed
Bockris, J. O'M., Devanathan, M. A. V. & Müller, K. (1963). Proc. R. Soc. Lond. A 274. 5579.Google Scholar
Boddy, P. J. (1965). The structure of the semiconductor-electrolyte interface. J. electroanal. Chem. 10, 199244.Google Scholar
Brown, R. (1828). A brief account of microscopical observations on the particles contained in the pollen of plants. Phil. Mag. (New Ser.) 4, 161173.CrossRefGoogle Scholar
Cady, W. G. (1946). Piezoelectricity. New York: McGraw-Hill.Google Scholar
Calabrese, G. S., Wohltjen, H. & Roy, M. K. (1987). Surface acoustic wave devices as chemical sensors in liquids. Evidence disputing the importance of Rayleigh wave propagation. Analyt. Chem. 59, 833837.CrossRefGoogle Scholar
Caras, S. & Janata, J. (1988). Enzymatically Sensitive Field Effect Transistors. In Methods in Enzymology (ed. Mosbach, K.), vol. 137, pp. 247255. San Digo: Academic.Google Scholar
Chan, B. M. C. & Brash, J. L. (1981). Conformational change in fibrinogen desorbed from glass surface. J. Colloid Interface Sci. 84, 263265.CrossRefGoogle Scholar
Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Phil. Mag. (Ser. 6) 25, 475481.CrossRefGoogle Scholar
Charmet, J. C. & de Gennes, P. G. (1983). Ellipsometric formulae for an inhomogeneous layer with arbitrary refractive index profile. J. opt. Soc. Am. 73, 17771784.CrossRefGoogle Scholar
Cherny, V. V., Sokolov, V. S. & Abidor, I. G. (1980). Determination of the surface charge of bilayer lipid membranes. Bioelectrochem. Bioenergetics 7, 413420.CrossRefGoogle Scholar
Chittur, K. K., Fink, D. J., Leininger, R. I. & Hutson, T. B. (1986). Fourier transform infrared spectroscopy/attenuated total reflexion studies of protein adsorption in flowing systems: approaches for bulk correction and compositional analysis of adsorbed and bulk proteins in mixtures. J. Colloid Interface Sci. III, 419433.CrossRefGoogle Scholar
Chu, B. (1974). Laser Light Scattering. New York: Academic Press.Google Scholar
Cohen, R. R. & Radke, C. J. (1991). Streaming potentials of nonuniformly charged surfaces. J. Colloid Interface Sci. 141, 338347.CrossRefGoogle Scholar
Colowick, S. P. & Womack, F. C. (1969). Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J. biol. Chem. 244, 774777.CrossRefGoogle ScholarPubMed
Cornelius, R. M., Wojciechowski, P. W. & Brash, J. L. (1992). Measurement of protein adsorption kinetics by an in situ, real-time, solution depletion technique. J. Colloid Interface Sci. 150, 121133.CrossRefGoogle Scholar
Crank, J. (1975). The Mathematics of Diffusion. 2nd Edn.Oxford: Clarendon Press.Google Scholar
Cullen, D. C., Brown, R. G. W. & Lowe, C. R. (1987/1988). Detection of immunocomplex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3, 211225.CrossRefGoogle ScholarPubMed
Cummins, H. Z. & Swinney, H. L. (1970). Light beating spectroscopy. Prog. Optics 8, 133200.CrossRefGoogle Scholar
Cummins, H. Z. & Pike, E. R. (eds) (1974). Photon Correlation and Light Beating Spectroscopy. New York: Plenum.CrossRefGoogle Scholar
Curie, J. & Curie, P. (1890). Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées. C. r. hebd. Séanc. Acad. Sci., Paris 91, 294295.Google Scholar
Cuypers, P. A., Corsel, J. W., Janssen, M. P., Kop, J. M. M., Hermens, W. Th. & Hemker, H. C. (1983). The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry. J. biol. Chem. 258, 24262431.CrossRefGoogle ScholarPubMed
Dickman, R., Wang, J.-S. & Jensen, I. (1991). Random sequential adsorption: series and viral expansions. J. chem. Phys. 94, 82528257.CrossRefGoogle Scholar
Duckworth, D. S., Lips, A. & Staples, E. J. (1978). Concentration effects in polymer flocculation and stabilization. Faraday Discuss, chem. Soc. 65, 288295.CrossRefGoogle Scholar
van Dulm, P. & Norde, W. (1983). The adsorption of human plasma albumin on solid surfaces, with special attention to the kinetic aspects. J. Colloid Interface Sci. 91, 248255.CrossRefGoogle Scholar
van Dulm, P., Norde, W. & Lyklema, J. (1981). Ion participation in protein adsorption at solid surfaces. J. Colloid Interface Sci. 82, 7782.CrossRefGoogle Scholar
Efimov, E. A.Erusalemchik, I. G. (1963). Electrochemistry of germanium and silicon. Washington, D.C.: Sigma Press.Google Scholar
Elgersma, A. V., Zsom, R. L. J., Lyklema, J. & Norde, W. (1992). Kinetics of single and competitive protein adsorption studied by reflectometry and streaming potential measurements. Colloids Surf. 65, 1728.CrossRefGoogle Scholar
Engvall, E. & Perlmann, P. (1971). Enzyme-linked immunosorbent assay (ELISA). Immunochemistry 8, 871874.CrossRefGoogle ScholarPubMed
Ermakov, Yu. A., Fevraleva, I. S. & Attaullakhanov, R. I. (1985). 2, 10941100.Google Scholar
Ermakov, Yu. A. (1990). The determination of binding site density and association constants for monovalent cation adsorption onto liposomes made from mixtures of zwitterionic and charged lipids. Biochim. biophys. Acta 1023, 9197.CrossRefGoogle ScholarPubMed
Fahrenfort, J. (1961). Attenuated total reflexion. Spectrochim. Acta 17, 698709.CrossRefGoogle Scholar
Fair, B. D. & Jamieson, A. M. (1980). Studies of protein adsorption on polystyrene latex surfaces. J. Colloid Interface Sci. 77, 525534.CrossRefGoogle Scholar
de Feijter, J. A., Benjamins, J. & Veer, F. A. (1978). Ellipsometry as a tool to study the adsorption behaviour of polymers at the air-water interface. Biopolymers 17, 17591772.CrossRefGoogle Scholar
Feldman, K. (1978). New devices for flow dialysis and ultrafiltration for the study of protein-ligand interactions. Analyt. Biochem. 88, 225235.CrossRefGoogle Scholar
Förster, Th. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik (6. Folge) 2, 5575.CrossRefGoogle Scholar
Gebbert, A., Alvarez-Icaza, M., Stócklein, W. & Schmid, R. D. (1992). Real-time monitoring of immunochemical interactions with a tantalum capacitance flowthrough cell. Analyt. Chem. 64, 9971003.CrossRefGoogle Scholar
Ghatak, A. K. & Thyagarajan, K. (1989). Optical Electronics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gobrecht, H. & Meinhardt, O. (1963). Über die Impedanz von Halbleiter– Elektrolyt–Grenzflächen. Ber. BunsenGes. phys. Chem. 67, 142151.CrossRefGoogle Scholar
Goos, F. & Hänchen, H. (1947). Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Physik (6. Folge) 1, 333346.CrossRefGoogle Scholar
Goos, F. & Lindberg-Hänchen, H. (1950). Neumessung des Strahlversetzungseffektes bei Totalreflexion. Ann. Physik (6. Folge) 5, 251252.Google Scholar
Gouy, M. (1910). Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Radium 9, 457468.Google Scholar
Gray, R. W. & Ramsay, W. (1909). Some physical properties of radium emanation. J. chem. Soc. 95, 10731085.CrossRefGoogle Scholar
Harrick, N. J. (1960). Surface chemistry from spectral analysis of totally internally reflected radiation. Phys. Rev. Lett. 4, 224226; J. phys. Chem. 64, 1110–1114.CrossRefGoogle Scholar
Harrick, N. J. (1967). Internal Reflexion Spectroscopy. New York: Wiley.Google Scholar
Harten, H. U. (1964). Die Grenzfläche Halbleiter–Elektrolyt. In Festkörperprobleme, Band III (ed. Sauter, F.), pp. 81123. Brunswick: Vieweg.CrossRefGoogle Scholar
Healy, T. W. & White, L. R. (1978). Ionizable surface group models of aqueous interfaces. Adv. Colloid Interface Sci. 9, 303345.CrossRefGoogle Scholar
Herrmann, P. P. & Wildmann, D. (1983). Fabrication of planar dielectric wave-guides with high optical damage threshold. IEEE J. Quantum Electron. QE-19, 17351738.CrossRefGoogle Scholar
Heuberger, K. & Lukosz, W. (1986). Embossing technique for fabricating surface relief gratings on hard oxide waveguides. Appl. Opt. 25, 14991504.CrossRefGoogle ScholarPubMed
Hlady, V. (1991). Spatially resolved adsorption kinetics of immunoglobulin G onto the wettability gradient surface. Appl. Spectrosc. 45, 246252.CrossRefGoogle Scholar
Hunter, R. J. (1981). Zeta Potential in Colloid Science. London: Academic Press.Google Scholar
Iwamoto, G. K., Winterton, L. C., Stoker, R. S., van Wagenen, R. A., Andrade, J. D. & Mosher, D. F. (1985). Fibronectin adsorption detected by interfacial fluorescence, j. Colloid Interface Sci. 106, 459464.CrossRefGoogle Scholar
Jenkins, F. A. & White, H. E. (1950). Fundamentals of Optics, 2nd ed., New York: McGraw-Hill.Google Scholar
Johnson, J. E. & Matijević, E. (1992). Interactions of proteins with uniform colloidal hematite and chromium hydroxide particles. I. Adsorption. Colloid Polym. Sci. 270, 353363.CrossRefGoogle Scholar
Jones, R. C. (1952). ‘Detectivity’: the reciprocal of noise equivalent input of radiation. Nature, Lond. 170, 937938.CrossRefGoogle Scholar
Kalb, E. & Engel, J. (1991). Binding and calcium-induced aggregation of laminin onto lipid membranes. J. biol. Chem. 266, 1904719052.CrossRefGoogle Scholar
Kanazawa, K. K. & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with a liquid. Analytica chim. Acta 175, 99105.CrossRefGoogle Scholar
Kolb, D. M. (1982). The study of solid–liquid interfaces by surface plasmon polariton excitation. In Agranovich & Mills, pp. 299329.CrossRefGoogle Scholar
Kopaciewicz, W., Rounds, M. A., Fausnaugh, J. & Regnier, F. E. (1983). Retention model for high-performance ion-exchange chromatography. J. Chromatogr. 266, 321.CrossRefGoogle Scholar
Kretschmann, E. (1971). Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Z. Phys. 241, 313324.CrossRefGoogle Scholar
Kulik, E. A., Kalinin, I. D. & Sevastyanov, B. I. (1991). 65, 22302234.Google Scholar
Kulik, E. A. & Sevastyanov, B. I. (1991). 65, 22342239.Google Scholar
Kuramitsu, S. & Hamaguchi, K. (1980). Analysis of the acid-base titration curve of henlysozyme. J. Biochem. 87, 12151219.Google Scholar
Kurrat, R., Ramsden, J. J. & Prenosil, J. E. (1993). Kinetic model for serum albumin adsorption: experimental verification. J. chem Soc. Faraday Trans. (in press).Google Scholar
Laane, C., Willner, I., Otvos, J. W. & Calvin, M. (1981). Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micelles. Proc. natn. Acad. Sci. U.S.A. 78, 59285932.CrossRefGoogle Scholar
Langmuir, I. & Schaefer, V. J. (1938). Activities of urease and pepsin monolayers. J. Am. chem. Soc. 60, 13511360.CrossRefGoogle Scholar
Law, B. M. & Beaglehole, D. (1981). Model calculations of the ellipsometric properties of inhomogeneous dielectric surfaces. J. Phys. D 14, 115126.Google Scholar
Leaver, G., Howell, J. A. & Conder, J. R. (1992). Adsorption kinetics of albumin on a cross-linked chromatographic ion exchanger. J. Chromatogr. 590, 101112.CrossRefGoogle Scholar
Lecompte, M. F., Clavilier, J., Dode, C., Elion, J. & Miller, I. R. (1984). Electroactivity of adsorbed prothrombin at the Hg-solution interface. J. electroanal. Chem. 163, 345362.CrossRefGoogle Scholar
Lee, R. G. & Weber, T. W. (1969). Isothermal adsorption in fixed beds. Can. J. Chem. Engng 47, 5459.CrossRefGoogle Scholar
Levich, V. G. (1962). Physicochemical Hydrodynamics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Lin, B. & Rice, S. A. (1993). Evanescent wave light scattering study of a diblock copolymer adsorbed at the air/water interface. J. chem. Phys. 98, 65616562.CrossRefGoogle Scholar
Lukosz, W. (1991). Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosensors Bioelectronics 6, 215225.CrossRefGoogle Scholar
Lukosz, W., Nellen, Ph. M., Stamm, Ch. & Weiss, P. (1990). Output grating couplers on planar waveguides as integrated optical chemical sensors. Sensors Actuators B1, 585588.CrossRefGoogle Scholar
Lukosz, W. & Stamm, Ch. (1991). Integrated optical interferometer as relative humidity sensor and differential refractometer. Sensors Actuators A 25–27, 185188.Google Scholar
Lukosz, W. & Tiefenthaler, K. (1983). Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Optics Lett. 8, 537539.CrossRefGoogle ScholarPubMed
Lundström, I. & Elwing, H. (1990). Simple kinetic models for protein exchange reactions on solid surfaces, J. Colloid Interface Sci. 136, 6884.CrossRefGoogle Scholar
Lutanie, E., Voegel, J. C., Schaaf, P., Freund, M., Cazenave, J. P. & Schmitt, A. (1992). Competitive adsorption of human immunoglobulin G and albumin. Proc. natn. Acad. Sci. U.S.A. 89, 98909894.CrossRefGoogle ScholarPubMed
Macritiche, F. (1978). Proteins at interfaces. Adv. Protein Chem. 32, 283326.CrossRefGoogle Scholar
Mangelsdorf, C. S. & White, L. R. (1990). Effects of stem-layer conductance on electrokinetic transport properties of colloidal particles, J. chem. Soc. Faraday Trans. 86, 28592870.CrossRefGoogle Scholar
Mason, W. P., Baker, W. O., McSkimin, H. J. & Heiss, J. H. (1949). Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys. Rev. 75, 936946.CrossRefGoogle Scholar
Masuda-Nakagawa, L. M. & Wiedemann, C. (1992). The rôle of matrix molecules in regeneration of leech central nervous system, J. Neurobiol. 23, 551567.CrossRefGoogle Scholar
Maternaghan, T. J. & Ottewill, R. H. (1974). An ellipsometric study of the adsorption of gelatin on silver bromide, J. photogr. Sci. 22, 279285.CrossRefGoogle Scholar
McCammon, J. A., Deutch, J. M. & Felderhof, B. U. (1975). Frictional properties of multisubunit structures. Biopolymers 14, 26132623.CrossRefGoogle Scholar
McCrackin, F. L., Passaglia, E., STromberg, R. R. & Steinberg, H. L. (1963). J. Res. natn. Bur. Standards A 67, 363377.CrossRefGoogle Scholar
Morrissey, B. W. & Stromberg, R. R. (1974). The conformation of adsorbed blood proteins by infrared bound fraction measurements, J. Colloid Interface Sci. 46, 152164.CrossRefGoogle Scholar
Morrissey, B. W., Smith, L. E., Stromberg, R. R. & Fenstermaker, C. A. (1976). Ellipsometric investigation of the effect of potential on blood protein conformation and absorbance. J. Colloid Interface Sci. 56, 557563.CrossRefGoogle Scholar
Morrissey, B. W. & Han, C. C. (1978). The conformation of γ-globulin adsorbed on polystyrene latices determined by quasielastic light scattering. J. Colloid Interface Sci. 65 423431.CrossRefGoogle Scholar
Mura-Galelli, M. J., Voegel, J. C., Behr, S., Bres, E. F. & Schaaf, P. (1991). Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model. Proc. natn. Acad. Sci. U.S.A. 88, 55575561.CrossRefGoogle ScholarPubMed
Myamlin, V. A. & Pleskov, Yu. V. (1967). Electrochemistry of Semiconductors. New York: Plenum Press.CrossRefGoogle Scholar
Nakata, S., Yoshikawa, K. & Matsuda, T. (1992). Voltage-dependent capacitance as a probe for albumin adsorption onto a solid surface. Biophys. Chem. 42, 213220.CrossRefGoogle ScholarPubMed
Newton, I. (1687). Philosophiae naturalis principia mathematica. Lib. I, Sect. XIV, Prop. XCVI, Theor. L. London: The Royal Society.CrossRefGoogle Scholar
Nieto, A., Gayá, A., Moreno, C., Jansá, M. & Vives, J. (1986). Adsorption–desorption of antigen to polystyrene plates used in Elisa. Ann. Inst. Pasteur/Immunol. 137 C, 161172.CrossRefGoogle Scholar
Norde, W. (1986). Adsorption of proteins from solution at the solid–liquid interface. Adv. Colloid Interface Sci. 25, 267340.CrossRefGoogle ScholarPubMed
Norde, W. & Lyklema, J. (1978). The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces. J. Colloid Interface Sci. 66, 257302.CrossRefGoogle Scholar
Norde, W. & Lyklema, J. (1979). Thermodynamics of protein adsorption. J. Colloid Interface Sci. 71, 350366.CrossRefGoogle Scholar
Norde, W. & Rouwendal, E. (1990). Streaming potential measurements as a tool to study protein adsorption kinetics. J. Colloid Interface Sci. 139, 169176.CrossRefGoogle Scholar
Nygren, H. (1992). Critical dissociation of ferritin during adsorption at a liquid-solid interface. Prog. Coll. Polymer. Sci. 88, 8689.CrossRefGoogle Scholar
Nygren, H. & Karlsson, C. (1992). Intermolecular interaction and ordering of fibrinogen at a liquid-solid interface. Prog. Coll. Polymer. Sci. 88, 9699.CrossRefGoogle Scholar
Nygren, H. & Stenberg, M. (1990 a). Surface-induced aggregation of ferritin. Biophys. Chem. 38, 6775.CrossRefGoogle ScholarPubMed
Nygren, H. & Stenberg, M. (1990 b). Surface-induced aggregation of ferritin. Biophys. Chem. 38, 7785.CrossRefGoogle ScholarPubMed
O'Brien, R. W. & White, L. R. (1978). Electrophoretic mobility of a spherical colloidal particle. J. chem. Soc. Faraday Trans. 2 77, 16071626.CrossRefGoogle Scholar
van den Oetelaar, P. J. M., Mentink, I. M. & Brinks, G. J. (1989). Loss of peptides and proteins upon sterile filtration due to adsorption to membrane filters. Drug Development ind. Pharmacy 15, 97106.CrossRefGoogle Scholar
Paik, W.-K., Genshaw, M. A. & Bockris, J. O'M. (1970). The adsorption of anions at the solid-solution interface. J. phys. Chem. 74, 42664275.Google Scholar
Place, H., Sébille, B. & Vidal-Madjar, C. (1991). Characterization of the adsorption kinetics of proteins on reversed-phase supports. Analyt. Chem. 63, 12221227.CrossRefGoogle Scholar
Pleskov, Yu. V. & Gurevich, Yu. Ya. (1986). Semiconductor Photoelectrochemistry. New York: Plenum Press.CrossRefGoogle Scholar
Popkirov, G. & Tabov, N. (1982). Method for measurement of capacitance, series and shunt resistances of semiconductor junctions. Rev. scient. Instrum. 53, 864866.CrossRefGoogle Scholar
Porstmann, T. & Kiessig, S. T. (1992). Enzyme immunoassay techniques. J. Immun. Meth. 150, 521.CrossRefGoogle ScholarPubMed
Rabinowitch, F. (1937). Collision, coördination, diffusion and reaction velocity in condensed systems. Trans. Faraday Soc. 33, 12251233.CrossRefGoogle Scholar
Ramsden, J. J. (1985). Nucleation and growth of small CdS aggregates by chemical reaction. Surf. Sci. 156, 10271039.CrossRefGoogle Scholar
Ramsden, J. J. (1987). Electron diffraction anomalies in small CdS clusters. J. Cryst. Growth 82, 569572.CrossRefGoogle Scholar
Ramsden, J. J. (1993 a). Calcium-dependence of laminin binding to phospholipid monolayers. Biopolymers 33, 475477.CrossRefGoogle Scholar
Ramsden, J. J. (1993 b). Concentration scaling of protein deposition kinetics. Phys. Rev. Lett. 71, 295298.CrossRefGoogle ScholarPubMed
Ramsden, J. J. (1993 c). Review of new experimental techniques for investigating random sequential adsorption, J. statist. Phys. 73, 853877.CrossRefGoogle Scholar
Ramsden, J. J. & Prenosil, J. E. (1993). Salt effects on protein adsorption kinetics. (Submitted).Google Scholar
Ramsden, J. J. & Schneider, P. (1993). Membrane insertion and antibody recognition of a glycosylphosphatidylinositol-anchored protein. Biochemistry 32, 523529.CrossRefGoogle ScholarPubMed
Reinders, W. & de Minjer, C. H. (1938). The redox potentials of complex iron salts with the sodium salts of organic acids. Recl Trav. chim. Pays-Bas Belg. 57, 594603.CrossRefGoogle Scholar
Ricci, S. M., Talbot, J., Tarjus, G. & Viot, P. (1992). Random sequential adsorption of anisotropic particles. II. Low coverage kinetics. J. chem. Phys. 97, 52195228.CrossRefGoogle Scholar
Righetti, P. G., Tudor, G. & Ek, K. (1981). Isoelectric points and molecular weights of proteins. J. Chromatogr. 220, 115194.CrossRefGoogle Scholar
Rocco, M., Infusini, E., Daga, M. G., Gogioso, L. & Cuniberti, C. (1987). Models of fibronectin. EMBO J. 6, 23432349.CrossRefGoogle ScholarPubMed
Roederer, J. E. & Bastiaans, G. J. (1983). Microgravimetric immunoassay with piezoelectric crystals. Analyt. Chem. 55, 23332336.CrossRefGoogle Scholar
Rondelez, F., Ausserré, D. & Hervet, H. (1987). Experimental studies of polymer concentration profiles at solid-liquid interfaces by optical and X-ray evanescent wave techniques. A. Rev. phys. Chem. 38, 317347.CrossRefGoogle Scholar
Rowland, F. W. & Eirich, F. R. (1966 a). Flow rates of polymer solutions through porous disks. 1. Method. J. Polymer Sci. A-1 4, 20332040.CrossRefGoogle Scholar
Rowland, F. W. & Eirich, F. R. (1966 b). Flow rates of polymer solutions through porous disks. 2. Thickness and structure of adsorbed polymer films, J. Polymer Sci. A-1 4, 24012421.CrossRefGoogle Scholar
Sarkar, D. & Chattoraj, D. K. (1992). Absolute reaction rate and kinetics of protein adsorption at solid–liquid interfaces. Ind. J. Biochem. Biophys. 29, 135142.Google ScholarPubMed
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung d¨nner Schichten und zur Mikrowägung. Z. Phys. 155, 206222.CrossRefGoogle Scholar
Schaaf, P., Dejardin, Ph. & Schmitt, A. (1985). Réflectométrie appliquée aux interfaces diffuses: possibilités et limites de la technique. Revue Phys. Appl. 20, 631640.CrossRefGoogle Scholar
Schaaf, P. & Dejardin, Ph. (1988). Structural changes within an adsorbed fibrinogen layer during the adsorption process. Colloids Surf. 31, 89103.CrossRefGoogle Scholar
Schaaf, P., Dejardin, Ph., Johner, A. & Schmitt, A. (1987 a). Thermal denaturation of an adsorbed fibrinogen layer studied by reflectometry. Langmuir 3, 11281131.CrossRefGoogle Scholar
Schaaf, P., Dejardin, Ph. & Schmitt, A. (1987 b). Reflectometry as a technique to study the adsorption of human fibrinogen at the silica-solution interface. Langmuir 3, 11311135.CrossRefGoogle Scholar
Schaaf, P. & Talbot, J. (1989). Surface exclusion effects in adsorption processes. J. chem. Phys. 91, 44014409.CrossRefGoogle Scholar
Schottky, W. (1942). Vereinfachte und erweiterte Theorie der Randschichtgleichrichter. Z. Phys. 118, 539592.CrossRefGoogle Scholar
Schumacher, R. (1990). The quartz microbalance. Angeio. Chem. 102, 347361; Angew. Chem. Int. Ed. 29, 329–343.CrossRefGoogle Scholar
SinanoǦlu, O. (1981). What size cluster is like a surface? Chem. Phys. Lett. 81, 188190.CrossRefGoogle Scholar
Soderquist, M. E. & Walton, A. G. (1980). Structural changes in proteins adsorbed on polymer surfaces. J. Colloid Interface Sci. 75, 386397.CrossRefGoogle Scholar
Spiro, T. (1985). Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Adv. Protein Chem. 37, 111159.CrossRefGoogle ScholarPubMed
Stelzle, M. & Sackmann, E. (1989). Sensitive detection of protein adsorption to supported lipid bilayers by frequency-dependent capacitance measurements and microelectrophoresis. Biochim. biophys. Acta 981, 135142.CrossRefGoogle ScholarPubMed
Stenberg, M., Arwin, H. & Nilsson, A. (1979). Silicon–silicon dioxide as an electrode for electrical and ellipsometric measurements of adsorbed organic molecules. J. Colloid Interface Sci. 72, 255264.CrossRefGoogle Scholar
Stern-Hamburg, O. (1924). Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochem. 30, 508516.Google Scholar
Stoner, G. & Srinavasan, S. (1970). Adsorption of blood proteins on metals using capacitance techniques. J. phys. Chem. 74, 10881094.CrossRefGoogle Scholar
Strachan, C. (1933). The reflexion of light at a surface covered by a monomolecular film. Proc. Camb. phil. Soc. 29 (Part 1), 116130.CrossRefGoogle Scholar
Swalen, J. D., Tacke, M., Santo, R., Rieckhoff, K. E. & Fischer, J. (1978). Spectra of organic molecules in thin films. Helv. chim. Acta 61, 960977.CrossRefGoogle Scholar
Sze, S. M. (1981). Physics of Semiconductor Devices. 2nd Edition. New York: Wiley.Google Scholar
Tamm, L. & Bartoldus, I. (1988). Antibody binding to lipid model membranes. Biochemistry 27, 74537458.CrossRefGoogle Scholar
Tiefenthaler, K. (1992). Integrated optical couplers as chemical waveguide sensors. Adv. Biosensors 2, 261289.Google Scholar
Tiefenthaler, K. & Lukosz, W. (1989). Sensitivity of grating couplers as integratedoptical chemical sensors. J. opt. Soc. Am. B 6, 209220.CrossRefGoogle Scholar
Tien, P. K. (1977). Integrated optics and new wave phenomena in optical waveguides. Rev. mod. Phys. 49, 361420.CrossRefGoogle Scholar
Tilton, R. D., Robertson, C. R. & Gast, A. P. (1990). Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface. J. Colloid Interface Sci. 137, 192203.CrossRefGoogle Scholar
Uzgiris, E. E. & Fromageot, H. P. M. (1976). Thickness and density of protein films by optical mixing spectroscopy. Biopolymers 15, 257263.CrossRefGoogle ScholarPubMed
Vašíček, A. (1960). Optics of Thin Films. Amsterdam: North-Holland.Google Scholar
Verwey, E. J. W. & Overbeek, J. Th. G. (1948). Theory of the Stability of Lyophobic Colloids. New York: Elsevier.Google Scholar
Veselova, M. N., Chukhrai, E. S. & Poltorak, O. M. (1987). 6124612464.Google Scholar
Viot, P., Tarjus, G., Ricci, S. M. & Talbot, J. (1992). Random sequential adsorption of anisotropic particles. I. Jamming limit and asymptotic behaviour. J. chem. Phys. 97, 52125218.CrossRefGoogle Scholar
Vogelsberger, W. & Marx, G. (1976). Zur Kr¨mmungsabhängigkeit der Oberflächenspannung kleiner Tröpchen. Z. phys. Chem. (Leipzig) 257, 580586.Google Scholar
van Wagenen, R. A. & Andrade, J. D. (1980). Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. J. Colloid Interface Sci. 76, 305314.CrossRefGoogle Scholar
Ward, M. D. & Buttry, D. A. (1990). In situ interfacial mass detection with piezoelectric transducers. Science, N.Y. 249, 10001007.CrossRefGoogle ScholarPubMed
White, R. M. (1970). Surface elastic waves. Proc. IEEE 58, 12381276.CrossRefGoogle Scholar
Wiersema, P. H., Loeb, A. L. & Overbeek, J. Th. G. (1966). Calculation of electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22, 7899.CrossRefGoogle Scholar
Wreghitt, T. G. & Morgan-Capner, P. (ed.) (1990). Elisa in the Clinical Microbiology Laboratory. London: Public Health Laboratory Service.Google Scholar
Yen, Y.-S. & Wong, J. S. (1989). Infrared reflectance properties of surface thin films. J. phys. Chem. 93, 72087216.CrossRefGoogle Scholar
Zweig, H. J. (1964). Performance criteria for photodetectors. Photogr. Sci. Engng 8, 305311.Google Scholar