Skip to main content Accessibility help
×
Home

Energy profiles in the gramicidin A channel

  • A. Pullman (a1)

Extract

Gramicidin A (GA) is a linear pentadecapeptide made of alternating D and L residues, in which the N-and C-terminals are blocked by a formyl group (head) and an ethanolamine end (tail), respectively (Sarges & Witkop, 1964):

Copyright

References

Hide All
Andersen, O. S. (1984). Gramicidin channels. A. Rev. Physiol. 46, 531548.
Arseniev, A. S., Barsukov, I. L., Bystrov, V. F., Lomize, A. L. & Ovchinnikov, Yu. A. (1985). 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed single-stranded helices. FEBS Lett. 186, 168174.
Arseniev, A. S., Barsukov, I. L., Bystrov, V. F. & Ovchinnikov, Yu. A. (1986). Spatial structure of gramicidin A transmembrane ion channel – NMR analysis in micelles. Biological Membranes (URSS) 3, 437462 (edition in Russian).
Bamberg, E. & Läuger, P. (1977). Blocking of the gramicidin A channel by divalent cations. J. Membrane Biol. 35, 351375.
Bamberg, E., Noda, K., Gross, E. & Läuger, P. (1976). Single-channel parameters of gramicidin A, B and C. Biochim. biophys. Acta 419, 223228.
Barrett-Russell, E. W., Weiss, L. B., Navetta, F. I., Koeppe, R. E. II. & Andersen, O. S. (1986). Single-channel studies on linear gramicidins with altered amino-acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. Biophys. J. 49, 673686.
Busath, D. & Waldbillig, R. C. (1983). Photolysis of gramicidin A channels in lipid bilayers. Biochim. biophys. Acta 736, 2838.
Eisenman, G., Dani, J. A. & Sandblom, J. (1985). Recent studies on the energy profiles underlying permeation and ion-selectivity of the gramicidin and acetylcholine receptor channel. In Ion Measurements in Physiology and Medicine (ed. Kessler, M.), pp. 5466. Springer-Verlag: Berlin Heidelberg.
Eisenman, G. & Horn, R. (1983). Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membrane Biol. 76, 197225.
Eisenman, G. & Sandblom, J. P. (1983). Energy barriers in ionic channels: data for gramicidin A interpreted using a single-file (3B4S) model having 3 barriers separating 4 sites. In Physical Chemistry of Transmembrane Ion Motions (ed. Spach, G.), pp. 329348. Amsterdam: Elsevier Science Publishers.
Etchebest, C. & Pullman, A. (1984). The gramicidin A channel. Role of the ethanolamine end chain on the energy profiles for single occupancy by Na+. FEBS Lett. 170, 191195.
Etchebest, C. & Pullman, A. (1985). The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel. J. Biomol. Structure and Dynamics 2, 859870.
Etchebest, C. & Pullman, A. (1986 a). The gramicidin A channel. Energetics and structural characteristics of the progression of a sodium ion in the presence of water. J. Biomol. Structure and Dynamics 3, 805825.
Etchebest, C. & Pullman, A. (1986 b). The gramicidin A channel. The energy profile calculated for Na+ in the presence of water with inclusion of the flexibility of the ethanolamine tail. FEBS Lett. 204, 261265.
Etchebest, C., Pullman, A. & Ranganathan, S. (1985). The gramicidin A channel: theoretical energy profile computed for single occupancy by a divalent cation. Ca2+. Biochim. biophys. Acta 818, 2330.
Etchebest, C., Ranganathan, S. & Pullman, A. (1984). The gramicidin A channel: comparison of the energy profiles of Na+, K+ and Cs+. Influence of the flexibility of the ethanolamine end chain on the profiles. FEBS Lett. 173, 301306.
Finkelstein, A. & Andersen, O. S. (1981). The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membrane Biol. 59, 155171.
Fischer, W., Brickmann, J. & Läuger, P. (1981). Molecular dynamics study of ion transport in transmembrane protein channels. Biophys. Chem. 13, 105116.
Furois-Corbin, S. & Pullman, A. (1986 a). Theoretical study of the packing of α-helices by energy minimization: effect of the length of the helices on the packing energy and on the optimal configuration of a pair. Chem. Phys. Lett. 123, 305310.
Furois-Corbin, S. & Pullman, A. (1986 b). Theoretical study of the packing of α-helices of poly(L-alanine) into transmembrane bundles. Possible significance for ion-transfer. Biochim. biophys. Acta 860, 165177.
Furois-Corbin, S. & Pullman, A. (1987). Theoretical study of potential ion channels formed by a bundle of α-helices: effect of the presence of polar residues along the channel inner wall. J. molec. Structure and Dynamics 4, 589598.
Goodall, M. C. (1971). Thickness dependence in the action of gramicidin A on lipid bilayers. Archs Biochem. Biophys. 147, 129135.
Gresh, N., Claverie, P. & Pullman, A. (1979). Intermolecular interactions: reproduction of the results of ab initio supermolecule computations by an additive procedure. Int. J. Quantum Chem. S13, 243253.
Gresh, N., Claverie, P. & Pullman, A. (1984). Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison with ab initio SCF computations. Theor. chim. Acta (Berl.) 66, 120.
Gresh, N., Pullman, A. & Claverie, P. (1985 a). Theoretical studies of molecular conformation. II. Application of the SIBFA procedure to molecules containing carbonyl and carboxylate oxygens and amide nitrogens. Theor. chitn. Acta (Berl.) 67, 1132.
Gresh, N., Pullman, A. & Claverie, P. (1985 b). Cation-ligand interactions: reproduction of extended basis set ab initio SCF computations by the SIBFA-2 additive procedure. Int. J. Quantum Chem. 28, 757771.
Haydon, D. A. & Hladky, S. B. (1972). Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5, 187282.
Heitz, F., Spach, G. & Trudelle, Y. (1982). Single channels of 9, 11, 13, 15-oestryptophyl-phenylalanyl-gramicidin A Biophys. J. 39, 8789.
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. biophys. Acta 274, 294312.
Jones, D., Hayon, E. & Busath, D. (1986). Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultra-violet light. Biochim. biophys. Acta 861, 6266.
Jordan, P. C. (1984). The total electrostatic potential in a gramicidin A channel. J. Membrane Biol. 78, 91102.
Läuger, P. (1973). Ion transport through pores: a rate-theory analysis. Biochim. biophys. Acta 311, 423441.
Läuger, P. (1980). Kinetic properties of ion-carriers and channels. J. Membrane Biol. 57, 163178.
Läuger, P. (1982). Microscopic calculation of ion-transport rates in membrane channels. Biophys. Chem. 15, 89100.
Lavery, R., Sklenar, H., Zakrzewska, K. & Pullman, B. (1986 a). The flexibility of the nucleic acids. II. The calculation of internal energy and applications to mononucleotide repeat DNA. J. Biomol. Structure and Dynamics 3, 9891014.
Lavery, R., Sklenar, H. & Pullman, B. (1986 b). The flexibility of the nucleic acids (III) the interaction of an aliphatic diamine, putrescine, with flexible B-DNA. Biomol. Structure and Dynamics 3, 10151031.
Levitt, D. G. (1978 a). Electrostatic calculations for an ion-channel. I. Energy and potential profiles and interactions between ions. Biophys. J. 22, 209219.
Levitt, D. G. (1978 b). Electrostatic calculations for an ion channel. II. Kinetic behaviour of the gramicidin A channel. Biophys. J. 22, 221247.
Mackay, D. H. J., Berens, P. H., Wilson, K. R. & Hagler, A. T. (1984). Structure and dynamics of ion transport through gramicidin A. Biophys. J. 46, 229247.
Mazet, J. L., Andersen, O. S. & Koeppe, R. E. II (1984). Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophan and tyrosine substitution at positions 1 and 11. Biophys. J. 45, 263276.
Parsegian, A. (1969). Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature (London) 221, 844846.
Parsegian, A. (1975). Ion membrane interactions as structural forces. Ann. N.Y. Acad. Sci. 264, 161174.
Pullman, A. & Etchebest, C. (1983). The gramicidin A channel: the energy profile for single and double occupancy in a head-to-head helical dimer backbone. FEBS. Lett. 163, 199202.
Pullman, A. & Etchebest, C. (1987). The effect of molecular structure and of water on the energy profiles in the gramicidin A channel. In Ion Transport through Membranes ed. Yagi, K. and Pullman, B.), pp. 277293. Tokyo: Academic Press.
Sarges, R. & Witkop, B. (1964). Formyl, a novel NH2-terminal blacking group in a naturally occurring peptide. The identity of sec-gramicidin with desformylgramicidin. J. Am. chem. Soc. 86, 18611862.
Schroeder, H. (1983). Rate-theoretical analysis of ion-transport in membrane channels with elastically bound ligands. In Physical Chemistry of Trans-membrane Ion Motions (ed. Spach, G.), pp. 425436. Amsterdam: Elsevier.
Schroeder, H. (1985). A molecular model for ion-selectivity in membrane channels. Eur. Biophys. J. 11, 157165.
Tosteson, D. C., Andreoli, T. E., Tieffenberg, M. & Cook, P. (1968). The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J. gen. Physiol. 51, 373384S.
Urry, D. W. (1971). The gramicidin A transmembrane channel: a proposed π(L, D) helix. Proc. natn. Acad. Sci. USA 68, 672676.
Urry, D. W. (1973). Polypeptide conformation and biological function. β-helices (πL, D-helices) as permselective transmembrane channels. In Conformation of Biological Molecules and Polymers, Jerusalem Symposium on Quantum Chemistry and Biochemistry (ed. Pullman, B.), vol. 5, pp. 723736. Israel Academy of Sciences and Humanities.
Urry, D. W., Alonso-Romanowski, S., Venkatachalam, C. M., Trapane, T. L. & Prasad, K. U. (1984). The source of the dispersity of gramicidin A single-channel conductances. The L-Leu5-gramicidin A analog. Biophys. J. 46, 259266.
Urry, D. W., Prasad, K. U. & Trapane, T. L. (1982 a). Location of monovalent cation binding sites in the gramicidin A channel. Proc. natn. Acad. Sci. USA 79, 390394.
Urry, D. W., Trapane, T. L. & Prasad, K. L. (1982 b). Molecular structure and ionic mechanisms of an ion-selective transmembrane channel: monovalent versus divalent cation selectivity. Int. J. Quantum Chem., Quantum Biol. Symp. 9, 3140.
Urry, D. W., Trapane, T. L. & Venkatachalam, C. M. (1986). Potassium-39 NMR of K+-interaction with the gramicidin A channel and NMR-derived conductance ratios for Na+, K+ and Rb+. J. Membrane Biol. 89, 107111.
Urry, D. W., Venkatachalam, C. M., Prasad, K. U., Bradley, R. J., Parenticastelli, G. & Lenaz, G. (1981). Conduction processes of the gramicidin A channel. Int. J. Quantum Chem. Quantum Biol. Symp. 8, 385389.
Urry, D. W., Venkatachalam, C. M., Spisni, A., Läuger, P. & Khaled, Md. A. (1980). Rate-theory calculation of gramicidin A single-channel currents using NMR derived rate constants. Proc. natn. Acad. Sci. USA 77, 20282032.
Venkatachalam, C. M. & Urry, D. W. (1983). Theoretical conformational analysis of the gramicidin A transmembrane channel. 1. Helix sense and energetics of head-to-head dimerization. J. comp. Chem. 4, 461469.
Venkatachala, C. M. & Urry, D. W. (1984). Theoretical analysis of gramicidin A transmembrane channel. II. Energetics of helical librational states of the channel. J. comp. Chem. 5, 6471.
Wallace, B. A. (1983). Gramicidin A adopts distinctly different conformations in membranes and in organic solvents. Biopolymers 22, 397402.
Wallace, B. A. (1984). Ion-bound forms of the gramicidin A transmembrane channel. Biophys. J. 45, 114116.
Weiler-Feichenfeld, H., Pullman, A., Berthod, H. & Giessner-Prettre, C. (1970). Experimental and quantum-chemical studies of the dipole moments of quinoleine and indole. J. molec. Structure 6, 297304.
Weinstein, S., Durkin, J. T., Veatch, W. R. & Blout, E. R. (1985). Conformation of the gramicidin A channel in phospholipid vesicles: a fluorine 19 NMR study. Biochemistry 24, 4374.

Related content

Powered by UNSILO

Energy profiles in the gramicidin A channel

  • A. Pullman (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.