Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T22:17:25.518Z Has data issue: false hasContentIssue false

DNA and RNA: NMR studies of conformations and dynamics in solution

Published online by Cambridge University Press:  17 March 2009

Dinshaw J. Patel
Affiliation:
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
Lawrence Shapiro
Affiliation:
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
Dennis Hare
Affiliation:
Infinity Systems, 14810 2156 Avenue NW, Woodinville, Washington 98072

Extract

The early NMR research on nucleic acids was of a qualitative nature and was restricted to partial characterization of short oligonucleotides in aqueous solution. Major advances in magnet design, spectrometer electronics, pulse techniques, data analysis and computational capabilities coupled with the availability of pure and abundant supply of long oligonucleotides have extended these studies towards the determination of the 3-D structure of nucleic acids in solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agris, P. F., Sierzputowski-Gracz, H. & Smith, C. (1986). Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched E. coli and yeast tRNAphe. Biochemistry 25, 51265131.Google Scholar
Altona, C. (1982). Conformational analysis of nucleic acids. Determination of backbone geometry of single helical RNA and DNA in aqueous solution. Reel. Trav. Chim. Pays-Bas 101, 413433.CrossRefGoogle Scholar
Arnott, S., Chandrasekaran, R., Hall, I. H. & Puigjaner, L. C. (1983 a). Heteronomous DNA. Nucl. Acids Res. 11, 41414155.Google Scholar
Arnott, S., Chandrasekaran, R., Hall, I. H., Puigjaner, L. C., Walker, J. K. & Wang, M. (1983 b). DNA secondary structures: helices, wrinkles and junctions. Cold Spring Harb. Symp. quant. Biol. 47, 5365.Google Scholar
Arter, D. B. & Schmidt, P. G. (1976). Ring current shielding effects in nucleic acid double helices. Nucl. Acids Res. 3, 14371447.Google Scholar
Assa-Munt, N., Granot, J., Behling, R. W. & Kearns, D. R. (1984). Proton NMR relaxation studies of the hydrogen-bonded imino protons of poly(dA-dT). Biochemistry 23, 944955.Google Scholar
Aue, P. W., Bartholdi, W. & Ernst, R. R. (1976). Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. chem. Phys. 64, 22292246.Google Scholar
Bax, A. (1982). Two Dimensional Nuclear Magnetic Resonance in Liquids. Dordrecht, Holland: D. Reidl.Google Scholar
Bax, A. & Freeman, R. (1981). Investigation of complex networks of spin-spin couplings by two dimensional NMR. J. magn. Reson. 44, 542561.Google Scholar
Bax, A. & Lerner, L. (1986). Two dimensional nuclear magnetic resonance spectroscopy. Science 232, 960967.Google Scholar
Behling, R. W., Rao, S., Kollman, P. & Kearns, D. R. (1987). Molecular mechanics calculations of (dA) 10 (dT) 10 incorporating constraints derived from NMR relaxation measurements. Biochemistry (submitted for publication).Google Scholar
Boelens, R., Scheek, R. M., Dijkstra, K. & Kaptein, R. (1985). Sequential assignment of imino- and amino-proton resonances in proton NMR spectra of oligonucleotides by two dimensional NMR spectroscopy. Application to a lac operator fragment. J. magn. Reson. 62, 378386.Google Scholar
Bolton, P. H. (1982). J. magn. Reson. 48, 336340.Google Scholar
Borer, P. N., Zaratta, N., Holak, T. A., Levy, G. C., Van Boom, J. H. & Wang, A. H. (1984). Conformation and dynamics of short DNA duplexes: (dC-dG)3 and (dC-dG)4. J. biomol. Str. Dynam. 1, 13731386.CrossRefGoogle Scholar
Bothner-By, A. A. (1979). Nuclear Overhauser effects on protons and their use in the investigation of the structures of biomolecules. In Biological applications of Magnetic Resonance (ed. Shulman, R. G.), pp. 177269. New York: Academic Press.CrossRefGoogle Scholar
Braun, W., Wider, G., Lee, K. H. & Wuthrich, K. (1983). Conformation of glucagons in a lipid-water interface by proton NMR. J. molec. Biol. 169, 921948.Google Scholar
Broido, M. S., James, T. L., Zon, G. & Keepers, J. W. (1985). Investigation of the solution of a DNA octamer d(GGAATTCC)2 using two dimensional NOE spectroscopy. Eur. J. Biochem. 150, 117128.CrossRefGoogle Scholar
Broido, M. S., Zon, G. & James, T. L. (1984). Complete assignment of the non-exchangeable proton NMR resonances of d(GGAATTCC)2 using 2D NOE spectra. Biochem. biophys. Res. Commun. 119, 663670.Google Scholar
Brooks, B. R., Bruccoleri, R. E., Olafson, R. E., States, D. J., Swaminathan, S. & Karplus, M. (1983). Charmm. A program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chent. 4, 187217.CrossRefGoogle Scholar
Brown, L. R. (1984). Differential scaling along ω1 in COSY experiments. J.magn. Reson. 57, 513518.Google Scholar
Bystrov, V. F. (1976). Spin coupling constants and the conformation states of peptide systems. Progr. NMR Spectroscopy 10, 4181.CrossRefGoogle Scholar
Cantor, C. R. & Efstratiadis, A. (1984). Possible structures of homopurine-homopyrimidine S1-hypersensitive sites. Nucl. Acids Res. 12, 80598072.Google Scholar
Chang, L. H. & Marshall, A. G. (1986). Identification of three GU base pairs in Bacillus subtilis ribosomal 5S RNA via 500 MHz proton homonuclear Overhauser enhancements. Biochemistry 25, 30563063.Google Scholar
Chazin, W. J., Wuthrich, K., Hyberts, S., Rance, M., Denny, W. A. & Leupin, W. (1986). Proton NMR assignments for d(GCATTAATGC) using experimental refinements of established procedures. J. molec. Biol. 190, 430453.Google Scholar
Chen, S. & Marshall, A. G. (1986). Identification and assignment of base pairs in three helical stems of Torulopsis utilis ribosomal 5S RNA and its RNase T1 and RNase T2 cleaved fragments by proton NOE enhancements. Biochemistry 25, 51175125.Google Scholar
Cheng, D. M., Kan, L. S., Frechet, D., Ts'O, P. O. P., Uesugi, S., Shida, T. & Ikehara, M. (1984). Proton and phosphorus NMR studies on the conformation of d(CGCG)2 and d(CGCGCG)2 short helices in the B-conformation. Biopolymers 23, 775795.Google Scholar
Cheung, S., Arndt, K. & Lu, P. (1984). Correlation of lac operator DNA imino proton exchange kinetics with its function. Proc. natn. Acad. Sci. U.S.A. 81, 36653669.Google Scholar
Chou, S. H., Wemmer, D. E., Hare, D. R. & Reid, B. R. (1984). Sequence specific recognition of DNA: NMR studies of the imino protons of a synthetic RNA polymerase promotor. Biochemistry 23, 22572262.Google Scholar
Clore, G. M. & Gronenborn, A. M. (1983). Sequence dependent structural variations in two right-handed alternating pyrimidine-purine DNA oligomers in solution determined by NOE measurements. EMBO J. 2, 21092115.CrossRefGoogle Scholar
Clore, G. M. & Gronenborn, A. M. (1985). Solution structure of a B-DNA undecamer comprising a portion of the specific target site for cAMP receptor protein in the gal operon. Refinement on the basis of inter proton distance data. EMBO J. 4, 829835.CrossRefGoogle Scholar
Clore, G. M., Gronenborn, A. M., Brunger, A. T. & Karplus, M. (1985 a). Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of E. coli. Combined proton NMR and restrained molecular dynamics. J. molec. Biol. 186, 435455.Google Scholar
Clore, G. M., Gronenborn, A. M. & McLaughlin, L. W. (1985 b). Structure of double-stranded RNA pentamer r(CACAG) r(CUGUG) determined by NOE measurements: Interproton distance determination and structure refinement on the basis of X-ray coordinates. Eur. J. biochem. 151, 153165.Google Scholar
Clore, G. M., Gronenborn, A. M., Moss, D. S. & Tickle, I. J. (1985 c). Refinement of the solution structure of the B-DNA hexamer d(CGTACG) on the basis of interproton distance data. J. molec. Biol. 185, 219226.CrossRefGoogle Scholar
Cohn, M. (1982). O-18 and O-17 effects on phosphorus NMR as probes of enzymatic reactions of phosphate compounds. A. R. biophys. Bioeng. 11, 2342.CrossRefGoogle Scholar
Connolly, B. A. & Eckstein, F. (1984). Assignment of resonances in the phosphorus NMR spectrum of d(GGAATTCC) by regiospecific labelling with oxygen-17. Biochemistry 23, 55235527.Google Scholar
Connolly, B. A., Potter, B. V., Eckstein, F., Pingoud, A. & Grotjahn, L. (1984). Synthesis and characterization of an octanucleotide containing the EcoR1recognition sequence with a phosphorothioate group at the cleavage site. Biochemistry 23, 34433453.CrossRefGoogle ScholarPubMed
Crippen, G. M. (1981). Distance Geometry and Conformational Calculations. New York: John Wiley.Google Scholar
Cross, D. G., Brown, A. & Fisher, H. F. (1975). Hydrogen-deuterium exchange in nucleosides and nucleotides. A mechanism for exchange of exocyclic amino hydrogens of adenosine. Biochemistry 14, 27452749.Google Scholar
Crothers, D. M., Hilbers, C. W. & Shulman, R. G. (1973). NMR study of hydrogen bonded ring protons in Watson–Crick base pairs. Proc. natn. Acad. Sci. U.S.A. 70, 28992901.Google Scholar
Daniel, W. E. & Cohn, M. (1976). Changes in tertiary structure accompanying a single base change in tRNA. Proton NMR and aminoacylation studies of E. coli tRNAfmetl and tRNAfmet3 and their spin-labelled (s4U8) derivatives. Biochemistry 15, 39173924.Google Scholar
Davanloo, P., Sprinzl, M. & Cramer, F. (1979). Proton NMR of minor nucleotides in yeast tRNAphe. Conformational changes as a consequence of aminoacylation, removal of the Y base and codon–anticodon interaction. Biochemistry 18, 31893199.Google Scholar
Davis, D. R., Griffey, R. H., Yamaizumi, Z., Nishimura, S. & Poulter, C. D. (1986). 15N-labelled tRNA. Identification of dihydrouridine in E. coli tRNAs by proton–nitrogen two-dimensional NMR. J. biol. Chem. 261, 35843587.Google Scholar
Delihas, N., Anderson, J. & Singhal, R. P. (1984). Structure, function and evolution of 5S ribosomal RNAs. Progr. Nucl. Acids Res. molec. Biol. 31, 161190.Google Scholar
Dickerson, R. E. (1983). Base sequence and helix structure variation in B and A DNA. J. molec. Biol. 166, 419441.CrossRefGoogle Scholar
Dobson, C. M., Olejniczak, E. T., Poulson, F. M. & Ratcliffe, R. G. (1982). Time development of proton nuclear Overhauser effects in proteins. J. magn. Reson. 48, 97110.Google Scholar
Donlan, M., Cheung, S. & Lu, P. (1986). NMR studies of an SV40 enhancer core DNA sequence. Biophys. J. 49, 2629.Google Scholar
Early, T. A., Kearns, D. R., Hillen, W. & Wells, R. D. (1981 a). Proton NMR investigation of a 12 base pair restriction fragment: relaxation behavior of the low field resonances in H2O. Biochemistry 20, 37563764.Google Scholar
Early, T. A., Kearns, D. R., Hillen, W. & Wells, R. D. (1981 b). Proton NMR investigation of DNA restriction fragments: dynamic properties. Biochemistry 20, 37643769.CrossRefGoogle Scholar
Eckstein, F. (1983). Phosphorothioate analogs of nucleotides - tools for the investigation of biochemical processes. Angew. Chem. Int. Ed. Engl. 22, 423439.CrossRefGoogle Scholar
Eich, G., Bodenhausen, G. & Ernst, R. R. (1982). Exploring nuclear spin systems by relayed magnetization transfer. J. Am. chem. Soc. 104, 37313732.Google Scholar
Englander, S. W. & Kallenbach, N. R. (1983). Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quart. R. biophys. 16, 521655.Google Scholar
Evans, T. & Efstratiadis, A. (1986). Sequence-dependent SI nuclease-hypersensitivity of a heteronomous and bent DNA duplex. J. biol. Chem. (in the Press).CrossRefGoogle Scholar
Fazakerley, G. V., Van Der Marel, G. A., Van Boom, J. H. & Guschlbauer, W. (1984). Helix opening in DNA from a proton NMR study of imino and amino protons in d(CGCGCG). Nucl. Acids Res. 12, 82698279.Google Scholar
Feigon, J., Wang, A. H., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1985). proton NMR investigation of d(ATATCGATAT)2. Biochemistry 22, 59435951.Google Scholar
Feigon, J., Wang, A. E., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1985). Z-DNA forms without an alternating purine-pyrimidine sequence in solution. Science 230, 8284.CrossRefGoogle ScholarPubMed
Figueroa, N., Keith, G., Leroy, J. L., Plateau, P., Roy, S. & Gueron, M. (1983). NMR of slowly exchanging imino protons in yeast tRNAasp. Proc. natn. Acad. Scs. U.S.A. 80, 43304333.Google Scholar
Frey, M. H., Leupin, W., Sorenson, D. W., Denny, W. A., Ernst, R. R. & Wuthrich, K. (1985). Sequence specific assignments of the backbone proton and phosphorus lines in a short DNA duplex with homonuclear and heteronuclear correlated spectroscopy. Biopolymers 24, 23712380.Google Scholar
Fritzsche, H., Kan, L. S. & Ts'o, P. O. P. (1983). NMR study of the exchange behavior of the NH–N protons of a RNA miniduplex. Biochemistry 22, 277280.CrossRefGoogle ScholarPubMed
Gaffney, B. J. (1976). In Spin Labels: Theory and Applications (ed. Berliner, L. J.), Ch. 5. New York: Academic Press.Google Scholar
Gerlt, J. A., Coderre, J. A. & Mehdi, S. (1983). Oxygen chiral phosphate esters. Adv. Enzymol. Relat. Areas Mol. Biol. 55, 291380.Google Scholar
Giessner-Prettre, C. & Pullman, B. (1970). Intermolecular nuclear shielding values for protons of purines and flavins. J. theor. Biol. 27, 8795.CrossRefGoogle ScholarPubMed
Giessner-Prettre, C. & Pullman, B. (1982). Solution conformation of the double helix formed by d(CGCGAATTCGCG). A theoretical proton NMR study. Biochem. biophys. Res. Commun. 107, 15391544.Google Scholar
Giessner-Prettre, C., Pullman, B., Tran-Dinh, S., Neumann, J. M., Huynh-Dinh, T. & Igolen, J. (1984). Proton NMR study of the B to Z transition of d(CGm5CG)2 and d(CGm5CGCG)2: theory and experiment. Nucl. Acids Res. 12, 32713281.Google Scholar
Gollnick, P., Hardin, C. C. & Horowitz, J. (1986). 19F-NMR study of codon-anticodon interaction in 5-fluorouracil substituted E. coli.tRNA. Nucl. Acids Res. 14, 46594672.CrossRefGoogle Scholar
Gorenstein, D. G., Goldfield, E. M., Chen, R., Kovar, K. & Luxon, B. A. (1981). High resolution NMR spectra of yeast tRNAphe. Metal ion effects and tentative partial assignment of signals. Biochemistry 20, 21412150.Google Scholar
Griffey, R. H., Davis, D., Yamaizumi, Z., Nishimura, S., Bax, A., Hawkins, B. & Poulter, C. D. (1985). N-15 labelled E. coli tRNA. Double resonance and two-dimensional NMR of N-1 labelled pseudouridine. J. biol. Chem. 260, 97349741.Google Scholar
Griffey, R. H., Davis, D. R., Yamaizumi, Z., Nishimura, S., Hawkins, B. L. & Poulter, C. D. (1986). 15N-labelled tRNA. Identification of 4-thiouridine in E. coli tRNAser1 and tRNAser2 by proton–nitrogen two-dimensional NMR spectroscopy. J. biol. Chem. 261, 1207412078.CrossRefGoogle Scholar
Griffey, R. H., Poulter, C. D., Bax, A., Hawkins, B. L., Yamaizumi, Z. & Nishimura, S. (1983). Multiple quantum 2D proton–nitrogen NMR spectroscopy: chemical shift correlation maps for exchangeable imino protons of E. coli tRNAfmet in water. Proc. natn. Acad. Sci. U.S.A. 80, 58955897.Google Scholar
Griffey, R. H., Poulter, C. D., Yamaizumi, Z., Nishimura, S. & Hurd, R. (1982). Proton NMR studies of 15N labelled E. coli tRNAfmet. Use of proton–nitrogen couplings to identify imino resonances of uridine-related bases. J. Am. chem. Soc. 104, 58105811.CrossRefGoogle Scholar
Gronenborn, A. M. & Clore, G. M. (1985). Investigation of the solution structures of short nucleic acid fragments by means of NOE measurements. Prog. NMR Spectrosc. 17, 132.Google Scholar
Gronenborn, A. M., Clore, G. M. & Kimber, B. J. (1984). An investigation into the solution structures of d(CGTACG) and d(ACGCGCGT) by means of nuclear Overhauser effect measurements. Biochem. J. 221, 723736.CrossRefGoogle Scholar
Gueron, M. & Shulman, R. G. (1975). 31P magnetic resonance of tRNA. Proc. natn. Acad. Sci. U.S.A. 72, 34823485.Google Scholar
Haasnoot, C. A. & Hilbers, C. W. (1983). Effective water resonance suppression in 1D and 2D FT proton NMR spectroscopy of biopolymers in aqueous solution. Biopolymers 22, 12591266.Google Scholar
Haasnoot, C. A., Westerink, H. P., Van Der Marel, J. H. & Van Boom, J. H. (1983 b). Conformational analysis of d(CG)r(CG)d(CG) by 1D and 2D proton NMR spectroscopy. J. biomol. Str. Dyn. 1, 131149.Google Scholar
Hardin, C. C., Gollnick, P., Kallenbach, N. R., Cohn, M. & Horowitz, J. (1986). Fluorine-19 NMR studies of the structure of 5-fluorouracil-substituted E. coli tRNA. Biochemistry 25, 56995709.Google Scholar
Hare, D. R. & Reid, B. R. (1982). Direct assignment of the dihydrouridine–helix imino proton resonances in tRNA NMR spectra by means of the NOE. Biochemistry 21, 18351842.Google Scholar
Hare, D. R. & Reid, B. R. (1986). Three-dimensional structure of a DNA hairpin in solution: two-dimensional NMR and distance geometry calculations on d(CGCGTTTTCGCG). Biochemistry 25, 53415350.Google Scholar
Hare, D. R., Ribeiro, N. S., Wemmer, D. E. & Reid, B. R. (1985). Complete assignment of imino protons of E. coli tRNAval: two dimensional NMR studies in H2O. Biochemistry 24, 43004306.Google Scholar
Hare, D., Shapiro, L. & Patel, D. J. (1986 a). Wobble dG dT pairing in right-handed DNA: solution conformation of the d(CGTGAATTCGCG) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry 25, 74457456.Google Scholar
Hare, D., Shapiro, L. & Patel, D. J. (1986 b). Extrahelical adenosine stacks into the d(CGCAGAGCTCGCG) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry 25, 74567464.Google Scholar
Hare, D., Shapiro, L., Zagorski, M. & Patel, D. J. (1987 a). Solution conformation of homopyrimidine homopurine dodecanucleotides containing central C-G and G-C steps: distance geometry analysis of NOESY spectra. Biochemistry (submitted for publication).Google Scholar
Hare, D., Shapiro, L., Zagorski, M. & Patel, D. J. (1987 b). Solution conformation of fully- and partially-alternating pyrimidine-purine tetradecanucleotide duplexes: distance geometry analysis of NOESY spectra. Biochemistry (submitted for publication).Google Scholar
Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G. & Reid, B. R. (1983). Assignment of nonexchangeable proton resonances of d(CGCGAATTCGCG) using two dimensional NMR methods. J. molec. Biol. 171, 319336.Google Scholar
Havel, T. F., Crippen, G. M. & Kuntz, I. D. (1979). Effects of distance constraints on macromolecular conformation. II. Simulations of experimental results and theoretical predictions. Biopolymers 18, 7381.CrossRefGoogle Scholar
Havel, T. F. & Wuthrich, K. (1985). An evaluation of the combined use of NMR and distance geometry for the determination of protein conformations in solution. J. molec. Biol. 182, 281294.CrossRefGoogle ScholarPubMed
Heerschap, A. (1985). The solution structure of yeast tRNAphe as viewed by NMR. Ph.D. Thesis. Katholiek Universitet, Nijmegen, The Netherlands.Google Scholar
Heerschap, A., Haasnoot, C. A. & Hilbers, C. W. (1983). NMR studies of yeast tRNAphe. III. Assignment of the imino proton resonances of the tertiary structure by means of NOE experiments. Nucl. Acids Res. 11, 45014520.Google Scholar
Heerschap, A., Mellema, J. R., Janssen, H. G., Walters, J. A., Haasnoot, C. A. & Hilbers, C. W. (1985). Imino proton resonances of yeast tRNAphe studied by 2D NOE spectroscopy. Eur. J. Biochem. 149, 649655.Google Scholar
Hilbers, C. W. (1979). Hydrogen-bonded proton exchange and its effect on the NMR spectra of nucleic acids. In Biological Applications of Magnetic Resonance (ed. Shulman, R. G.), pp. 143. New York: Academic Press.Google Scholar
Hilbers, C. W., Heerschap, A., Haasnoot, C. A. & Walters, J. A. (1983 a). The solution structure of yeast tRNAphe as studied by NOEs in NMR. J. biomol. Str. Dyn. 1, 183207.Google Scholar
Hilbers, C. W., Heerschap, A., Walters, J. A. & Haasnoot, C. A. (1983 b). NMR studies of yeast tRNAphe in solution and its complex with the elongation factor Tu from B. stearothermophilus.In Nucleic Acids: The Vectors of Life (ed. Pullman, B. and Jortner, J.), pp. 427441. New York: Reidl.Google Scholar
Hilbers, C. W. & Patel, D. J. (1975). Proton NMR investigations of nucleation and propagation reactions associated with the helix–coil transition of d(ATGCAT) in H2O solution. Biochemistry 14, 26562660.Google Scholar
Hore, P. J. (1983). Solvent suppression in Fourier transform nuclear magnetic resonance. J. magn. Reson. 55, 283300.Google Scholar
Horowitz, J., Ofengand, J., Daniel, W. E. Jr. & Cohn, M. (1977). 19F NMR of fluorouridine-substituted tRNAval from E. coli. J. biol. Chem. 252, 44184420.Google Scholar
Hosur, R. V. (1986 a). Two-dimensional NMR for three-dimensional structure of nucleic acids: new techniques and novel results. Current Science 55, 597605.Google Scholar
Hosur, R. V., Ravikumar, M., Chary, K. V., Sheth, A., Govil, G., Kun, T. K. & Miles, H. T. (1986 b). Solution structure of d(GAATTCGAATTC) by 2D NMR: a new approach to determination of sugar geometries in DNA segments. FEBS Letters (in the Press).Google Scholar
Jamin, N., James, T. L. & Zon, G. (1985). Two dimensional NOE investigation of the solution structure and dynamics of the DNA octamer d(GGTATACC). Eur. J. Biochem. 152, 157166.Google Scholar
Jardetzky, O., Lane, A., Lefevre, J. F., Lichtarge, O., Hayes-Roth, B. & Buchanan, B. (1985). Determination of macromolecular structure and dynamics by NMR. In NMR in Life Sciences (ed. wBradbury, E. M.). New York: Plenum Press.Google Scholar
Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. (1979). Investigation of exchange processes by two dimensional NMR spectroscopy. J. chem. Phys. 71, 45464553.Google Scholar
Johnson, C. E. & Bovey, F. A. (1958). Calculation of NMR spectra of aromatic hydrocarbons. J. chem. Phys. 29, 10121014.Google Scholar
Johnston, P. D. & Redfield, A. G. (1977). An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNAphe. Nucl. Acids Res. 4, 35993616.Google Scholar
Johnston, P. D. & Redfield, A. G. (1981). Study of transfer ribonucleic acid unfolding by dynamic NMR. Biochemistry 20, 39964006.Google Scholar
Joseph, A. R. & Bolton, P. H. (1984). A general procedure for assigning phosphorus spectra of nucleic acid. J. Am. chem. Soc. 106, 437439.Google Scholar
Kalk, A. & Berendson, H. J. (1976). Proton magnetic relaxation and spin diffusion in proteins. J. magn. Reson. 24, 343366.Google Scholar
Kallenbach, N. R., Daniel, W. E. Jr. & Kaminker, M. A. (1976). NMR study of hydrogen-bonded ring protons in oligonucleotide helices involving classical and nonclassical base pairs. Biochemistry 15, 12181224.Google Scholar
Kan, L. S., Ts'O, P. O., Sprinzl, F., Van Der Haar, F. & Cramer, F. (1977). Proton NMR studies of transfer RNA: the methyl and methylene resonances of yeast tRNAphe and its fragments. Biochemistry 16, 31433199.Google Scholar
Kaptein, R., Nickolay, K. & Dijkstra, K. (1979). Photo-CIDNP in nucleic acid bases and nucleotides. J. chem. Soc. Chem. Commun. 10921094.Google Scholar
Kaptein, R., Zuiderweg, E. R., Scheek, R. M., Boelens, R. & Van Gunsteren, W. F. (1985). A protein structure from NMR data: lac repressor headpiece. J. molec. Biol. 182, 179182.Google Scholar
Karplus, M. (1959). Contact electron-spin coupling of nuclear magnetic moments. J. chem. Phys. 30, 1115.Google Scholar
Karplus, M. & McGammon, J. (1983). Dynamics of proteins: elements and function. A. Rev. Biochem. 52, 263300.Google Scholar
Kearns, D. R. (1984). NMR studies of conformational states and dynamics of DNA. CRC Reviews in Biochemistry 15, 237290.Google Scholar
Kearns, D. R., Patel, D. J. & Shulman, R. G. (1971). High resolution NMR studies of hydrogen bonded protons in tRNA in water. Nature 229, 338339.Google Scholar
Kearns, D. R. & Shulman, R. G. (1974). High resolution NMR studies of the structure of tRNA and other polynucleotides in solution. Ace. Chem. Res. 7, 3339.Google Scholar
Keepers, J. W. & James, T. L. (1984). A theoretical study of distance determination from NMR. Two dimensional NOESY spectra. J. magn. Reson. 57, 404426.Google Scholar
Kime, M. J. (1984). Assignment of resonances in E. coli 5S RNA fragment. Proton NMR spectrum using uniform N-15 enrichment. FEBS Lett. 173, 342346.Google Scholar
Kime, M. J., Gewirth, D. T. & Moore, P. B. (1984). Assignment of resonances in the downfield proton spectrum of E. coli 5S RNA and its nucleoprotein complexes using components of a ribonuclease-resistant fragment. Biochemistry 23, 35593568.Google Scholar
Kime, M. J. & Moore, P. B. (1983). NOE experiments on the downfield proton spectrum of a ribonuclease-resistant fragment of 5S RNA. Biochemistry 22, 26152622.CrossRefGoogle Scholar
Kline, A. D., Braun, W. & Wuthrich, K. (1986). Studies by proton NMR and distance geometry of the solution conformation of the α-amylase inhibitor tendamistat. J. molec. Biol. 189, 377382.Google Scholar
Kumar, A., Ernst, R. R. & Wuthrich, K. (1980). 2D NOE experiment for the elucidation of complete proton–proton cross relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95, 16.Google Scholar
Lankhorst, P. P., Erkelens, C., Haasnoot, C. A. & Altona, C. (1983). Carbon-13 NMR in conformational analysis of nucleic acid fragments. Heteronuclear chemical shift correlation spectroscopy of RNA constituents. Nucl. Acids Res. 11, 72157230.Google Scholar
Larsen, A. & Weintraub, H. (1982). An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29, 609622.Google Scholar
Lee, K. M. & Marshall, A. G. (1986). Demonstration of the GC-rich common arm in yeast ribosomal 5 8S RNA via proton NMR and NOE. Biochemistry 25, 82458252.Google Scholar
Lefevre, J. F., Lane, A. N. & Jardetzky, O. (1985). NMR study of the proton exchange rate in the operator–promotor DNA sequence of the trp operon of E. coli. J. molec. Biol. 185, 689699.Google Scholar
Leontis, N. B., Ghosh, P. & Moore, P. B. (1986). On the conformational properties of 5S RNA. In Biomolecular Stereodynamics IV (ed. Sarma, R. H. and Sarma, M. H.), pp. 287306. New York: Adenine Press.Google Scholar
Leontis, N. B. & Moore, P. B. (1986). Imino proton exchange in 5S RNA of E. coliand its complex with protein L25. Biochemistry 25, 57365744.Google Scholar
Leroy, J. L., Bolo, N., Figueroa, N., Plateau, P. & Gueron, M. (1985 a). Internal motions in tRNA: a study of exchanging protons by magnetic resonance. J. biomol. Str. Dyn. 2, 915939.Google Scholar
Leroy, J. L., Broseta, D. & Gueron, M. (1985 b). Proton exchange and base pair kinetics of poly(rA) poly(rU) and poly(rI) poly(rC). J. molec. Biol. 184, 165178.Google Scholar
Leroy, J. L., Kochoyan, M. & Gueron, M. (1986). The open state of nucleic acid base pairs: experimental results and hypothesis based on the two state model. In Abstracts: XII International Conference on Magnetic Resonance in Biological Systems (ed. Ruterjans, H.). Toodtmoos, West Germany.Google Scholar
Levitt, M. (1983). Computer simulation of DNA double helix dynamics. Cold Spring Harb. Symp. quant. Biol. 47, 251262.Google Scholar
Li, S.-J. & Marshall, A. G. (1986). Identification and assignment of base pairs in the ‘tuned helix’ of intact and ribonuclease T1 cleavage fragments of wheat germ ribosomal 5S RNA via proton NOEs. Biochemistry 25, 36733682.Google Scholar
Live, D. H., Cowburn, D. & Patel, D. J. (1987). Proton detected 15N and 13C NMR of nucleic acids via multiquantum spectroscopy. J. Am. chem. Soc. (submitted for publication).Google Scholar
Lu, P., Cheung, S. & Arndt, K. (1983). Possible molecular detente in the DNA structure at regulatory sequences. J. biomol. Str. Dyn. 1, 509521.Google Scholar
Lyamichev, V. I., Mirkin, S. M. & Frank-Kamenetskii, M. D. (1986). Structure of homopurine-homopyrimidine tract in superhelical DNA. J. biomol. Str. Dyn. 3, 667669.Google Scholar
Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979). Base pair opening and closing reactions in the double helix. A stopped-flow hydrogen exchange study in poly(A) poly(U). J. molec. Biol. 135, 391411.Google Scholar
Marion, D. & Lancelot, G. (1984). Sequential assignment of proton and phosphorus resonances of the double-stranded d(ATGCAT) by two dimensional NMR correlation spectroscopy. Biochem. biophys. Res. Commun. 124, 774783.Google Scholar
Marion, D. & Wuthrich, K. (1983). Application of phase sensitive correlated spectroscopy for measurement of proton–proton spin–spin coupling constants in proteins. Biochem. biophys. Res. Commun. 113, 967974.Google Scholar
McCall, M., Brown, T. & Kennard, O. (1985). The crystal structure of d(GGGGCCCC). A model for poly(dG) poly(dC). J. molec. Biol. 183, 385396.Google Scholar
McConnel, B. (1984). The amino proton resonances of oligonucleotide helices d(CGCG). J. biomol. Str. Dyn. 1, 14071421.Google Scholar
McConnel, B. & Politowski, D. (1984). Biophys. Chem. 20, 135148.Google Scholar
McCord, E. F., Morden, K. M., Pardi, A., Tinoco, I. Jr. & Boxer, S. G. (1984 a). Chemically induced dynamic nuclear polarization studies of guanosine in nucleotides, dinucleotides and oligonucleotides. Biochemistry 23, 19261934.Google Scholar
McCord, E. F., Morden, K. M., Tinoco, I. Jr. & Boxer, S. G. (1984 b). Chemically induced dynamic nuclear polarization studies of yeast tRNAphe. Biochemistry 23, 19351939.Google Scholar
Mellema, J. R., Haasnoot, C. A., Van Der Marel, G. A., Wille, G., Van Boeckel, C. A., Van Boom, J. H. & Altona, C. (1983). Proton NMR studies on the covalently linked RNA–DNA hybrid r(GCG)d(TATACGC). Assignment of proton resonances by application of the NOE. Nucl. Acids Res. 11, 57175738.Google Scholar
Mirau, P. A. & Kearns, D. R. (1984). Effect of environment, conformation, sequence and base substituents on the imino proton exchange rates in guanine and inosine containing DNA, RNA and DNA–RNA duplexes. J. molec. Biol. 177, 207227.CrossRefGoogle ScholarPubMed
Mirau, P. A. & Kearns, D. R. (1985). Sequence and conformational effects on imino proton exchange in A T and A U containing DNA and RNA duplexes. Biopolymers 24, 711724.Google Scholar
Mitra, C. K., Sarma, M. H. & Sarma, R. H. (1981). Left-handed deoxyribonucleic acid double helix in solution. Biochemistry 20, 20362041.Google Scholar
Muller, L. (1979). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. chem. Soc. 101, 44814484.Google Scholar
Muller, N., Ernst, R. & Wuthrich, K. (1986). Multiple-quantum-filtered two-dimensional correlated NMR spectroscopy of proteins. J. Am. chem. Soc. 108, 64826492.Google Scholar
Nagayama, K., Kumar, A., Wuthrich, K., Ernst, R. R. (1980). Experimental techniques of two dimensional correlated spectroscopy. J. magn. Reson. 40, 321334.Google Scholar
Nickol, J. M. & Felsenfeld, G. (1983). DNA conformation at the 5′ end of the chicken adult β-globin gene. Cell 35, 467477.Google Scholar
Nilsson, L., Clore, G. M., Gronenborn, A. M., Brunger, A. T. & Karplus, M. (1986). Structure refinements by molecular dynamics with NOE interproton distance restraints: application to d(CGTACG)2. J. molec. Biol. 188, 455475.Google Scholar
Noggle, J. H. & Schirmer, R. E. (1971). The Nuclear Overhauser Effect: Chemical Applications. New York: Academic Press.Google Scholar
Olejniczak, E. T., Gampe, R. T. Jr. & Fesik, S. W. (1986). Accounting for spin diffusion in the analysis of 2D NOE data. J. magn. Reson. 67, 2841.Google Scholar
Olsen, J. I., Schweizer, M. P., Walkiw, I. J., Hamill, W. D. Jr., Horton, W. J. & Grant, D. M. (1982). Carbon-13 NMR relaxation studies of pre-melt structural dynamics in [4-13C-uracil]-labelled E. coli tRNAval. Nucl. Acids Res. 10, 44404464.Google Scholar
Olson, W. K., Srinivasan, A. R., Cueto, M. A., Torres, R., Maroun, R. C., Cicariello, J. & Nauss, J. L. (1985). The effect of base sequence and morphology upon the conformation and properties of double helical DNA. Biomolecular Stereodynamics IV (ed. Sarma, R. H.), pp. 75100. New York: Adenine Press.Google Scholar
Ott, J. & Eckstein, F. (1985). Phosphorus NMR spectral analysis of the dodecamer d(CGCGAATTCGCG). Biochemistry 24, 25302535.Google Scholar
Otting, G., Senn, H., Wagner, G. & Wuthrich, K. (1986). Editing of 2D&-1H NMR spectra using X half-filters. Combined use with residue-selective 15N labelling of proteins. J. magn. Reson. 70, 500505.Google Scholar
Otting, G., Widmer, H., Wagner, G. & Wuthrich, K. (1985). Origin of t 1, and t 2 ridges in 2D-NMR spectra and procedures for suppression. J. magn. Reson. 66, 187193.Google Scholar
Pardi, A., Billeter, M. & Wuthrich, K. (1984). Calibration of the angular dependence of the amide proton–Cα proton coupling constants in a globular protein. J. molec. Biol. 180, 741751.Google Scholar
Pardi, A., Morden, K. M., Patel, D. J. & Tinoco, I. Jr. (1982). Kinetics for exchange of the imino protons in the d(CGCGAATTCGCG) double helix and in two similar helices that contain a GT base pair and an extra adenine. Biochemistry 21, 65676574.Google Scholar
Pardi, A. & Tinoco, I. Jr. (1982). Kinetics for exchange of imino protons in DNA, RNA and hybrid oligonucleotide helices. Biochemistry 21, 46864693.Google Scholar
Pardi, A., Walker, R., Rapoport, H., Wider, G. & Wuthrich, K. (1983). Sequential assignments of proton and phosphorus atoms of the backbone of oligonucleotides by two dimensional NMR. J. Am. chem. Soc. 105, 16521653.Google Scholar
Patel, D. J. (1976). Proton and phosphorus NMR studies of d(CGCG) and d(CGCGCG) duplexes in solution. Helix–coil transition and complex formation with actinomycin D. Biopolymers 15, 533558.Google Scholar
Patel, D. J. (1978). High resolution NMR of the structure and dynamics of tRNA in solution. A. Rev. phys. Chem. 29, 337362.Google Scholar
Patel, D. J. & Canuel, L. L. (1979). Helix–coil transition of the self-complementary d(GGAATTCC) duplex. Eur. J. Biochem. 96, 267276.Google Scholar
Patel, D. J. & Hilbers, C. W. (1975). Proton NMR investigations of fraying in double-stranded d(ATGCAT) in H2O solution. Biochemistry 14, 26512656.Google Scholar
Patel, D. J., Ikuta, S., Kozlowski, S. & Itakura, K. (1983 a). Sequence dependence of hydrogen exchange kinetics in DNA duplexes at the individual base pair level in solution. Proc. natn. Acad. Sci. U.S.A. 80, 21842188.Google Scholar
Patel, D. J., Kozlowski, S. A., Ikuta, S., Itakura, K., Bhatt, R. & Hare, D. (1983 b). NMR studies of DNA conformation and dynamics in solution. Cold Spring Harb. Symp. quant. Biol. 47, 197206.Google Scholar
Patel, D. J., Kozlowski, S. A., Weiss, M. & Bhatt, R. (1985). Conformation and dynamics of the Pribnow box region of the self-complementary d(CGATTATAATCG) duplex in solution. Biochemistry 24, 936944.Google Scholar
Patel, D. J., Pardi, A. & Itakura, K. (1982). DNA conformation, dynamics and interactions in solution. Science 216, 581590.Google Scholar
Patel, D. J., Shapiro, L. & Hare, D. R. (1986). Sequence-dependent conformation of DNA duplexes: the AATT segment of the d(GGAATTCC) duplex in aqueous solution. J. biol. Chem. 261, 12231229.Google Scholar
Patel, D. J., Shapiro, L. & Hare, D. (1987). NMR and DG studies of DNA structures in solution. A. Rev. Biophys. biophys. Chem. 16, 423454.Google Scholar
Petersheim, M., Mehdi, S. & Gerlt, J. A. (1984). A general procedure for assigning phosphorus spectra of nucleic acids. J. Am. chem. Soc. 106, 439440.Google Scholar
Pohl, F. M. & Jovin, T. M. (1972). Salt-induced cooperative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC). J. molec. Biol. 67, 375396.Google Scholar
Pulleyblank, D. E., Haniford, D. B. & Morgan, A. R. (1985). A structural basis for S1 nuclease sensitivity of double-stranded DNA. Cell 42, 271280.Google Scholar
Redfield, A. G., Kunz, S. D. & Ralph, E. K. (1975). Dynamic range in fourier transform magnetic resonance. J. magn. Reson. 19, 114117.Google Scholar
Redfield, A. G., Roy, S., Sanchez, V., Tropp, J. & Figueroa, N. (1981). NOE studies of tRNA: a progress report. In Proceedings of the Second SUNYA Conversation in the Discipline Biomolecular Stereodynatnics (ed. Sarma, R. H.), pp. 195208. New York: Adenine Press.Google Scholar
Reid, B. R., Ribeiro, N. S., McCollum, L., Abbate, J. & Hurd, R. E. (1977). High-resolution NMR determination of tRNA tertiary base pairs in solution. 1. Species containing a small variable loop. Biochemistry 16, 20862094.Google Scholar
Rich, A., Nordheim, A. & Wang, A. H. (1984). The chemistry and biology of left-handed Z-DNA. A. Rev. Biochem. 53, 791846.Google Scholar
Robillard, G. T. & Reid, B. R. (1979). Elucidation of nucleic acid structure by proton NMR. In Biological Applications of Magnetic Resonance (ed. Shulman, R. G.), pp. 45112. New York: Academic Press.Google Scholar
Roy, S., Papastavros, M. Z., Sanchez, V. & Redfield, A. G. (1984). Nitrogen-15 labelled yeast tRNAphe. Double and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups. Biochemistry 23, 43954400.Google Scholar
Roy, S. & Redfield, A. G. (1981). NOE study and assignment of D stem and reverse Hoogsteen base pair resonances in yeast tRNAasp. Nucl. Acids Res. 9, 70737083.Google Scholar
Roy, S. & Redfield, A. G. (1983). Assignment of imino proton spectra of yeast tRNAphe. Biochemistry 22, 13861390.Google Scholar
Salemink, P. J., Raue, H. A., Heerschap, A., Planta, R. J. & Hilbers, C. W. (1981). Proton and phosphorus NMR study of the solution structure of Bacillus licheniformus 5S ribonucleic acid. Biochemistry 20, 265272.Google Scholar
Salemink, P. J., Swarthof, T. & Hilbers, C. W. (1979). Studies of yeast tRNAphe backbone structure in solution by phosphorus NMR spectroscopy. Biochemistry 18, 34773485.Google Scholar
Scheek, R. M., Boelens, R., Russo, N., Van Boom, J. H. & Kaptein, R. (1984). Sequential resonance assignments in proton NMR spectra of oligonucleotides by two dimensional NMR spectroscopy. Biochemistry 23, 13711376.Google Scholar
Schimmel, P. R. & Redfield, A. G. (1980). Transfer RNA in solution: selected topics. A. Rev. biophys. Bioeng. 9, 181221.Google Scholar
Schon, E., Evans, T., Welsh, J. & Efstratiadis, A. (1983). Conformation of promoter DNA: fine mapping of S1-hypersensitive sites. Cell 35, 837848.Google Scholar
Schweizer, M. P., Olson, J. I., De, N., Messner, A., Walkiw, I. & Grant, D. M. (1984). 13C NMR studies of dynamics and synthetase interaction of [4-13C]uracil-labelled E. coli tRNAs. Fedn Proc. Fed. Am. Soc. exp. Biol. 43, 29842986.Google Scholar
Shah, D. O., Lai, K. & Gorenstein, D. G. (1984). Facile synthesis and phosphorus NMR spectra of a doubly-labelled oligonucleotide d[Ap(17O)Gp(18O)Cp(16O)T]. J. Am. chem. Soc. 106, 43024303.Google Scholar
Sklenar, V., Miyashiro, H., Zon, G., Miles, H. T. & Bax, A. (1986). Assignment of 31P and 1H resonances in oligonucleotides by two dimensional NMR spectroscopy. FEBS Lett. 208, 9498.Google Scholar
Smith, C., Schmidt, P. G., Petsch, J. & Agris, P. F. (1985). NMR signal assignments of purified [13C]methyl-enriched yeast tRNAphe. Biochemistry 24, 14341440.Google Scholar
Sorenson, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G. & Ernst, R. R. (1983). Product operator formalism for the description of NMR pulse experiments. Progr. in NMR Spectroscopy 16, 163192.Google Scholar
States, D. J., Haberkorn, R. A. & Ruben, D. J. (1982). A two dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. magn. Reson. 48, 286292.Google Scholar
Sternlicht, H., Shulman, R. G. & Anderson, E. W. (1965). NMR of metal ion binding to adenosine triphosphate II Proton studies. J. chem. Phys. 43, 31333143.Google Scholar
Suzuki, E., Pattabiraman, N., Zon, G. & James, T. L. (1986). Solution structure of [d(A-T)6] via complete relaxation analysis of 2D NOE spectra and molecular mechanics calculations: evidence for a hydration tunnel. Biochemistry 25, 68546865.Google Scholar
Tropp, J. & Redfield, A. G. (1981). Environment of ribothymidine in tRNA studied by means of NOE. Biochemistry 20, 21332140.Google Scholar
Tsai, M. D. (1979). Use of phosphorus NMR to distinguish bridge and nonbridge oxygens of O-17 enriched nucleoside triphosphate. Stereochemistry of acetate activation by acetylcoenzyme A synthetase. Biochemistry 18, 14681472.Google Scholar
Van Gunsteren, W. F. & Berendsen, H. J. (1982). Biochem. Soc. Trans. 10, 301305.Google Scholar
Wang, A. H., Gessner, R. V., Van der Marel, G. A., Van Boom, J. H. & Rich, A. (1985). Crystal structure of Z-DNA without an alternating purine–pyrimidine sequence. Proc. natn. Acad. Sci. U.S.A. 82, 36113615.Google Scholar
Wang, A. H., Hakoshima, T., Van der Marel, G., Van Boom, J. H. & Rich, A. (1984). AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell 37, 321331.Google Scholar
Waugh, J. S. & Fessenden, R. W. (1957). Nuclear resonance spectra of hydrocarbons: the free electron model. J. Am. chem. Soc. 79, 846849.Google Scholar
Weiss, M. A., Patel, D. J., Sauer, R. T. & Karplus, M. (1984 a). Proton NMR study of the λ operator site OL1: assignment of the imino and adenine H2 protons. Nucl. Acids Res. 12, 40354047.Google Scholar
Weiss, M. A., Patel, D. J., Sauer, R. T. & Karplus, M. (1984 b). Two dimensional proton NMR study of the λ operator site OL1: a sequential assignment strategy and its application. Proc. natn. Acad. Sci. U.S.A. 81, 130134.Google Scholar
Wemmer, D. E., Chou, S. H. & Reid, B. R. (1984). Sequence specific recognition of DNA. NMR experiments and structural comparison of wild type and mutant lambda OR3 operator DNA. J. molec. Biol. 180, 4160.Google Scholar
Wemmer, D. E. & Reid, B. R. (1985). High resolution NMR studies of nucleic acids and proteins. A. Rev. phys. Chem. 36, 105137.Google Scholar
Williamson, M. P., Havel, T. F. & Wuthrich, K. (1985). Solution conformation and proteinase inhibitor IIA from bull seminal plasma by proton NMR and distance geometry. J. molec. Biol. 182, 295315.Google Scholar
Wong, Y. P., Kearns, D. R., Reid, B. R. & Shulman, R. G. (1972). The extent of base pairing in 5S RNA: yeast 5S RNA. J. molec. Biol. 72, 741749.Google Scholar
Wuthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: John Wiley.Google Scholar