Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T01:35:16.907Z Has data issue: false hasContentIssue false

Applications of Fluorescence Correlation Spectroscopy

Published online by Cambridge University Press:  17 March 2009

Watt W. Webb
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, U.S.A.

Extract

The preceding paper by Douglas Magde has recounted the basic principles of Fluorescence Correlation Spectroscopy (FCS) as originally described (see Magde, Elson & Webb, 1972; Elson & Magde, 1974; Magde, Elson & Webb, 1974 Elson & Webb, 1975; referred to collectively as MEW), and has described the first application to chemical kinetics. In this paper I shall first illustrate the same principles of FCS with a simple graphical demonstration model based on the scheme for application to lateral diffusion in membranes as it was developed in our laboratory by Dr T. J. Herbert; I shall then proceed to discuss some current research in our group organized jointly with Professor E. L. Elson at Cornell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alder, B. J. & Wainwright, T. E. (1970). Decay of the velocity auto-correlation function. Phys. Rev. A 1, 1821.CrossRefGoogle Scholar
Badley, R. A., Martin, W. G. & Schneider, H. (1973). Dynamic behavior of fluorescent probes in lipid bilayer model membranes. Biochemistry, N.Y. 12, 268–75,CrossRefGoogle ScholarPubMed
Capaldi, R. A. (1974). A dynamic model of cell membranes. Scient. Am. 230, 2633.CrossRefGoogle ScholarPubMed
Cherry, R. J. (1975). Protein mobility in membranes. FEBS Lett. 55, 17.CrossRefGoogle ScholarPubMed
Edidin, M. (1974). Rotational diffusion in membranes. A. Rev. Biophys. Bioeng. 3, 179201.CrossRefGoogle ScholarPubMed
Elson, E. L. & Magde, D. (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 127.CrossRefGoogle Scholar
Elson, E. L. & Webb, W. W. (1975). Concentration correlation spectroscopy: A new biophysical probe based on occupation number fluctuations. A. Rev. Biophys. Bioeng. 4, 311–34.CrossRefGoogle ScholarPubMed
Frye, L. D. & Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse–human heterokaryons. J. Cell Sci. 7, 319–35.CrossRefGoogle ScholarPubMed
Gulik-Krzywicki, T. (1975). Structural studies of the associations between biological membrane components. Biochim. biophys. Acta 415, 128.CrossRefGoogle ScholarPubMed
Hui, S. W. & Parsons, D. F. (1975). Direct observation of domains wet bilayers. Science, N.Y. 190, 383–4.CrossRefGoogle ScholarPubMed
Jones, R. B., Felderhof, B. U. & Deutch, J. M. Diffusion of polymers along a fluid–fluid interface. (Unpublished private communication.)Google Scholar
Keyes, T. & Oppenheim, I. (1973). Bilinear hydrodynamics and the Stokes–Einstein Law. Phys. Rev. 8, 937.CrossRefGoogle Scholar
Koppel, D. E. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10, 1938–45.CrossRefGoogle Scholar
Lee, A. G. (1975). Functional properties of biological membranes: a physical chemical approach. Prog. Biophys. & molec. Biol. 29, 356.CrossRefGoogle ScholarPubMed
Lewis, J. C. (1973). On the Einstein–Stokes diffusion coefficient for Brownian motion in two dimensions. Phys. Lett. 44 A, 245–6.CrossRefGoogle Scholar
Magde, D., Elson, E. & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system – measurements by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–8.CrossRefGoogle Scholar
Magde, D., Elson, E. L. & Webb, W. W. (1974). Fluorescence correlation Spectroscopy. II. An experimental realization. Biopolymers 13, 2961.CrossRefGoogle Scholar
Montal, M. & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. natn. Acad. Sci. U.S.A. 69, 3561–6.CrossRefGoogle Scholar
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation 26, 1167–70.CrossRefGoogle Scholar
Peters, R., Peters, J., Tews, K. H. & Bahr, W. (1974). A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. biophys. Acta 367, 282–94.CrossRefGoogle ScholarPubMed
Poo, M.-m. & Cone, R. A. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature, Lond. 247, 438–41.CrossRefGoogle ScholarPubMed
Rand, R. P. & Pangborn, W. A. (1973). A structural transition in egg lecithin-cholesterol bilayers at 12 °C. Biochim. biophys. Acta 318, 299305.CrossRefGoogle Scholar
Razi-Naqvi, K. (1974). Diffusion-controlled reactions in two-dimensional fluids: Discussion of measurements of lateral diffusion of lipids in biological membranes. Chem. Phys. Lett. 28, 280–4.CrossRefGoogle Scholar
Sims, P. J., Waggoner, A. S., Wang, C. H. & Hoffman, J. F. (1974). Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidyl-choline vesicles. Biochemistry, N.Y. 13, 3315–30.CrossRefGoogle Scholar
Singer, S. I. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N.Y. 175, 720–31.CrossRefGoogle ScholarPubMed
Tardieu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. molec. Biol. 75, 711–33.CrossRefGoogle ScholarPubMed
Yguerabide, J. & Stryer, L. (1971). Fluorescence spectroscopy of an oriented model membrane. Proc. natn. Acad. Sci. U.S.A. 68, 1217–21.CrossRefGoogle ScholarPubMed