Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T22:54:17.544Z Has data issue: false hasContentIssue false

Trapped and Escaping Orbits in an Axially Symmetric Galactic-Type Potential

Published online by Cambridge University Press:  02 January 2013

Euaggelos E. Zotos
Affiliation:
Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece Email: evzotos@astro.auth.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present article, we investigate the behavior of orbits in a time-independent axially symmetric galactic-type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical surface-of-section method in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov characteristic exponent is used in order to make an estimation of the degree of chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic-type potential there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits, which do not escape at all. Furthermore, a large number of orbits of the dynamical system display chaotic motion. Among the chaotic orbits, there are orbits that escape quickly and also orbits that remain trapped for vast time intervals. When the value of a test particle's energy slightly exceeds the energy of escape, the number of trapped regular orbits increases as the value of the angular momentum increases. Therefore, the extent of the chaotic regions observed in the phase plane decreases as the energy value increases. Moreover, we calculate the average value of the escape period of chaotic orbits and try to correlate it with the value of the energy and also with the maximum value of the z component of the orbits. In addition, we find that the value of the Lyapunov characteristic exponent corresponding to each chaotic region for different values of energy increases exponentially as the energy increases. Some theoretical arguments are presented in order to support the numerically obtained outcomes.

Type
Regular Papers
Copyright
Copyright © Astronomical Society of Australia 2012

References

Anosova, J. P., 1986, Ap&SS, 124, 217Google Scholar
Benet, L., Trautmann, D. & Seligman, T. H., 1996, CeMDA, 66, 201Google Scholar
Benet, L., Seligman, T. H. & Trautmann, D., 1998, CeMDA, 71, 167CrossRefGoogle Scholar
Bleher, S., Grebogi, C., Ott, E. & Brown, R., 1988, PhRvA, 38, 930Google Scholar
Caranicolas, N. D., 1990, A&A, 227, 54Google Scholar
Caranicolas, N. D., 2001, JA&A, 22, 309Google Scholar
Caranicolas, N. D. & Innanen, K. A., 1991, AJ, 102, 1343CrossRefGoogle Scholar
Caranicolas, N. D. & Papadopoulos, N. J., 2003a, A&A, 399, 957Google Scholar
Caranicolas, N. D. & Papadopoulos, N. J., 2003b, JA&A, 24, 85Google Scholar
Caranicolas, N. D. & Vozikis, Ch. L., 1999, A&A, 349, 70Google Scholar
Caranicolas, N. D. & Vozikis, Ch. L., 2002, MeReC, 29, 91Google Scholar
Caranicolas, N. D. & Zotos, E. E., 2010, AN, 331, 330Google Scholar
Caranicolas, N. D. & Zotos, E. E., 2011a, RAA, 11, 811Google Scholar
Caranicolas, N. D. & Zotos, E. E., 2011b, RAA, 11, 1449Google Scholar
Churchill, R. C., et al. , 1979, in Como Conference Proceedings on Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Volume 93, Lecture Notes in Physics, ed. Casati, G. & Fords, J. (Berlin: Springer), 76Google Scholar
Contopoulos, G., 1990, A&A, 231, 41Google Scholar
Contopoulos, G., 2002, Order and Chaos in Dynamical Astronomy (Berlin: Springer)CrossRefGoogle Scholar
Contopoulos, G. & Efstathiou, K., 2004, CeMDA, 88, 163CrossRefGoogle Scholar
Contopoulos, G. & Harsoula, M., 2005, NYASA, 1045, 139Google Scholar
Contopoulos, G. & Kaufmann, D., 1992, A&A, 253, 379Google Scholar
Contopoulos, G. & Patsis, P. A., 2006, MNRAS, 369, 1039CrossRefGoogle Scholar
Contopoulos, G., Hénon, M. & Lynden-Bell, D., 1973, in Dynamical Structure and Evolution of Stellar Systems, Lectures of the 3rd Advanced Course of the Swiss Society of Astronomy and Astrophysics, ed. Contopoulos, G., Hénon, M. & Lynden-Bell, D. (Sauverny: Geneva Observatory), 91Google Scholar
Deprit, A. & Elipe, A., 1991, CeMDA, 51, 227CrossRefGoogle Scholar
Elipe, A., 2001, Math. Comp. Sim., 57, 217CrossRefGoogle Scholar
Elipe, A. & Deprit, A., 1999, MeReC, 26, 635Google Scholar
Fukushige, T. & Heggie, D. C., 2000, MNRAS, 318, 753CrossRefGoogle Scholar
Irigoyen, M. & Simó, C., 1993, CeMDA, 55, 281CrossRefGoogle Scholar
Kalnajs, A. J., 1973, PASA, 2, 174CrossRefGoogle Scholar
Kandrup, H., Siopis, Ch., Contopoulos, G. & Dvorak, R., 1999, Chaos, 9, 381CrossRefGoogle Scholar
Karanis, G. I. & Caranicolas, N. D., 2002, AN, 323, 3Google Scholar
Komatsu, E., et al. , 2011, ApJS, 192, 18CrossRefGoogle Scholar
Lichtenberg, A. J. & Lieberman, M. A., 1992, Regular and Chaotic Dynamics (2nd ed.; Berlin: Springer)CrossRefGoogle Scholar
Maciejewski, W. & Athanassoula, E., 2007, MNRAS, 380, 999CrossRefGoogle Scholar
Papadopoulos, N. J. & Caranicolas, N. D., 2007, A&AT, 26, 301Google Scholar
Romero-Gómez, M., Athanassoula, E., Antoja, T. & Figueras, F., 2011, MNRAS, 418, 1176CrossRefGoogle Scholar
Simó, C. & Stuchi, T. J., 2000, PhyD, 140, 1Google Scholar
Siopis, Ch., Kandrup, H., Contopoulos, G. & Dvorak, R., 1995a, NYASA, 773, 221Google Scholar
Siopis, Ch., Contopoulos, G. & Kandrup, H., 1995b, NYASA, 751, 205Google Scholar
Siopis, Ch., et al. , 1996, CeMDA, 65, 57CrossRefGoogle Scholar
Tremaine, S. D. & Weinberg, M. D., 1984, MNRAS, 209, 729CrossRefGoogle Scholar
Zotos, E. E., 2011a, NewA, 16, 391CrossRefGoogle Scholar
Zotos, E. E., 2011b, CSF, 44, 501Google Scholar