Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:19:33.762Z Has data issue: false hasContentIssue false

The Relationship of the Fanaroff-Riley Classification of Extragalactic Radio Sources to Jet Physics

Published online by Cambridge University Press:  25 April 2016

G. V. Bicknell*
Affiliation:
Mount Stromlo and Siding Spring Observatories Australian National University

Abstract

The Class I/Class II division of extragalactic radio sources by Fanaroff-Riley is a manifestation of important physical differences existing in radio sources.

It is proposed that the division essentially arises from the differing Mach numbers in Class I and Class II jets. The low Mach number, Class I jets are susceptible to turbulence, are decelerated by entrainment of the surrounding medium and maintain an anomalously high surface brightness as a result. The high Mach number, Class II jets are less turbulent and remain supersonic, produce high pressure shocks along their lengths and terminate via a strong shock against the IGM.

An analysis of the energy balance in both types of source reveals jet velocities of the order of 5-10,000 km s-1 for Class I jets and mildly relativistic velocities for Class II jets.

The important rôle of optical and X-ray observations in determining the gravitational field of pressure distribution in radio galaxies will be discussed with examples given of NGC1399 and IC4296.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baan, W. A., 1980, Astrophys. J., 239, 433.Google Scholar
Bicknell, G. V., 1984, Astrophys. J., 286, 68.CrossRefGoogle Scholar
Bicknell, G. V., 1985a, in ‘Physics of Energy Transport in Extragalactic Radio Sources’, ed. Bridle, A. H. and Eilek, J. A., (Greenbank: NRAO), 229.Google Scholar
Bicknell, G. V., 1985b, in preparation.Google Scholar
Bicknell, G. V., 1986, Astrophys. J., in press.Google Scholar
Bradshaw, P. 1981., in ‘The 1980-81 AFOSR-HTTM Conference on Complex Turbulent Flows’, Stanford University.Google Scholar
Bridle, A. H., 1984, Astron. J., 89, 979.Google Scholar
Bridle, A. H., Fomalont, E. B., and Henriksen, R. N., 1985, in preparation.Google Scholar
Cohn, H., 1983, Astrophys. J., 269, 500.Google Scholar
Dreher, J. W., 1985, in ‘Physics of Energy Transport in Extragalactic Radio Sources’, ed. Bridle, A. H., and Eilek, J. A., (Greenbank: NRAO), 109.Google Scholar
Fanaroff, B. L., and Riley, J. M., 1974, Mon. Not. R. Astron. Soc, 167, 31P.Google Scholar
Fanti, R., Lari, C., Parma, P., Bridle, A. H., Ekers, R. D., and Fomalont, E. B., 1982, Astron. Astrophys., 110, 69.Google Scholar
Fomalont, E. B., Bridle, A. H., Willis, A. G., and Perley, R. A., 1980, Astrophys. J., 237, 418.CrossRefGoogle Scholar
Killeen, N. E. B., Bicknell, G. V., and Carter, D., 1985, Astrophys.J., submitted.Google Scholar
Killeen, N. E. B., Bicknell, G. V., and Ekers, R. D., 1985, Astrophys. J., submitted.Google Scholar
Lau, J. C., 1981, J. Fluid Mech., 105, 193.Google Scholar
Linfield, R., 1982, Astrophys. J., 244, 436.Google Scholar
Norman, M. L., Winkler, K. -H. A., and Smarr, L., 1985, in ‘Physics of Energy Transport in Extragalactic Radio Sources’, ed. Bridle, A. H., and Eilek, J. A., (Greenbank: NRAO), 150.Google Scholar
Perley, R. A., Dreher, J. W., and Cowan, J. J., 1984, Astrophys. J.(Letters), 285, L35.Google Scholar
Pottasch, R. I., and Wardle, J. F.C, 1980, Astrophys. J., 239, 42.CrossRefGoogle Scholar
Smith, M. D., Norman, M. L., Winkler, K.-H. A., and Smarr, L., 1985, Mon. Not. R. Astron. Soc, 214, 67.Google Scholar
Willis, A. G., Strom, R. G., Bridle, A. H., and Fomalont, E. B., 1982, Astron. Astrophys., 95, 250.Google Scholar