Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T04:08:04.684Z Has data issue: false hasContentIssue false

Predicting the scaling relations between the dark matter halo mass and observables from generalised profiles I: Kinematic tracers

Published online by Cambridge University Press:  18 March 2024

A. Sullivan*
Affiliation:
International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia
C. Power
Affiliation:
International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, Australia
C. Bottrell
Affiliation:
International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA, Australia
*
Corresponding author: A. Sullivan; Email: andrew.sullivan@icrar.org

Abstract

We investigate the relationship between a dark matter halo’s mass profile and measures of the velocity dispersion of kinematic tracers within its gravitational potential. By predicting the scaling relation of the halo mass with the aperture velocity dispersion, $M_\mathrm{vir} - \unicode{x03C3}_\mathrm{ap}$, we present the expected form and dependence of this halo mass tracer on physical parameters within our analytic halo model: parameterised by the halo’s negative inner logarithmic density slope, $\unicode{x03B1}$, its concentration parameter, c, and its velocity anisotropy parameter, $\unicode{x03B2}$. For these idealised halos, we obtain a general solution to the Jeans equation, which is projected over the line of sight and averaged within an aperture to form the corresponding aperture velocity dispersion profile. Through dimensional analysis, the $M_\mathrm{vir} - \unicode{x03C3}_\mathrm{ap}$ scaling relation is devised explicitly in terms of analytical bounds for these aperture velocity dispersion profiles: allowing constraints to be placed on this relation for motivated parameter choices. We predict the $M_{200} - \unicode{x03C3}_\mathrm{ap}$ and $M_{500} - \unicode{x03C3}_\mathrm{ap}$ scaling relations, each with an uncertainty of $60.5\%$ and $56.2\%$, respectively. These halo mass estimates are found to be weakly sensitive to the halo’s concentration and mass scale, and most sensitive to the size of the aperture radius in which the aperture velocity dispersion is measured, the maximum value for the halo’s inner slope, and the minimum and maximum values of the velocity anisotropy. Our results show that a halo’s structural and kinematic profiles impose only a minor uncertainty in estimating its mass. Consequently, spectroscopic surveys aimed at constraining the halo mass using kinematic tracers can focus on characterising other, more complex sources of uncertainty and observational systematics.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aung, H., Nagai, D., Rozo, E., & Garca, R. 2021, MNRAS, 502, 1041. https://doi.org/10.1093/mnras/staa3994. arXiv: 2003.11557 [astro-ph.CO].CrossRefGoogle Scholar
Babyk, I. V., & McNamara, B. R. 2023, ApJ, 946, 54. https://doi.org/10.3847/1538-4357/acbf4b. arXiv: 2302.11247 [astro-ph.GA].CrossRefGoogle Scholar
Bakels, L., Ludlow, A. D., & Power, C. 2021, MNRAS, 501, 5948. https://doi.org/10.1093/mnras/staa3979 arXiv: 2008.05475 [astro-ph.GA].CrossRefGoogle Scholar
Beers, T. C., Flynn, K., & Gebhardt, K. 1990, AJ, 100 32 https://doi.org/10.1086/115487.CrossRefGoogle Scholar
Benson, A. J. 2005, MNRAS, 358, 551. https://doi.org/10.1111/j.1365-2966.2005.08788.x arXiv: astro-ph/0407428 [astro-ph].CrossRefGoogle Scholar
Berlind, A. A., & Weinberg, D. H. 2002, ApJ, 575, 587 https://doi.org/10.1086/341469. arXiv: astro-ph/0109001 [astro-ph].CrossRefGoogle Scholar
Bett, P., Eke, V., Frenk, C. S., Jenkins, A., Helly, J., & Navarro, J. 2007, MNRAS, 376 215 https://doi.org/10.1111/j.1365-2966.2007.11432.x. arXiv: astro-ph/0608607 [astro-ph].CrossRefGoogle Scholar
Binney, J. 1980, MNRAS, 190 873 https://doi.org/10.1093/mnras/190.4.873.CrossRefGoogle Scholar
Binney, J., & Mamon, G. A. 1982, MNRAS, 200 361 https://doi.org/10.1093/mnras/200.2.361.CrossRefGoogle Scholar
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd edn.).CrossRefGoogle Scholar
Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack, J. R., & Dekel, A. 2001, MNRAS, 321 559 https://doi.org/10.1046/j.1365-8711.2001.04068.x. arXiv: astro-ph/9908159 [astro-ph].CrossRefGoogle Scholar
Chan, T. K., Kereš, D., Oñorbe, J., Hopkins, P. F., Muratov, A. L., Faucher-Giguère, C.-A., & Quataert, E. 2015, MNRAS, 454 2981 https://doi.org/10.1093/mnras/stv2165. arXiv: 1507.02282 [astro-ph.GA].CrossRefGoogle Scholar
Cole, S., & Lacey, C. 1996, MNRAS, 281, 716 https://doi.org/10.1093/mnras/281.2.716. arXiv: astro-ph/9510147 [astro-ph].CrossRefGoogle Scholar
Cui, W., et al. 2018, MNRAS, 480, 2898 https://doi.org/10.1093/mnras/sty2111.. arXiv: 1809.04622 [astro-ph.GA].CrossRefGoogle Scholar
de Blok, W. J. G., Bosma, A., & McGaugh, S. 2003. MNRAS, 340, 657 https://doi.org/10.1046/j.1365-8711.2003.06330.x. arXiv: astro-ph/0212102 [astro-ph].CrossRefGoogle Scholar
Debattista, V. P., Moore, B., Quinn, T., Kazantzidis, S., Maas, R., Mayer, L., Read, J., & Stadel, J. 2008, ApJ, 681 1076 https://doi.org/10.1086/587977. arXiv: 0707.0737 [astro-ph].CrossRefGoogle Scholar
Di Cintio, A., Brook, C. B., Dutton, Macciò, A. V., Stinson, G. S., & Knebe, A. 2014, MNRAS, 441, 2986 https://doi.org/10.1093/mnras/stu729. arXiv: 1404.5959 [astro-ph.CO].CrossRefGoogle Scholar
Driver, S. P., et al. 2022, MNRAS, 515, 2138 https://doi.org/10.1093/mnras/stac581. arXiv: 2203.08540 [astro-ph.CO].CrossRefGoogle Scholar
Eke, V. R., et al. 2004, MNRAS, 348, 866 https://doi.org/10.1111/j.1365-2966.2004.07408.x. arXiv: astro-ph/0402567 [astro-ph].CrossRefGoogle Scholar
Hoekstra, H., Bartelmann, M., Dahle, H., Israel, H., Limousin, M., & Meneghetti, M. 2013, SSR, 177 75 https://doi.org/10.1007/s11214-013-9978-5. arXiv: 1303.3274 [astro-ph.CO].CrossRefGoogle Scholar
Host, O., Hansen, S. H., Piffaretti, R., Morandi, A., Ettori, S., Kay, S. T., & Valdarnini, R. 2009, ApJ, 690 358 https://doi.org/10.1088/0004-637X/690/1/358. . arXiv: 0808.2049 [astro-ph].CrossRefGoogle Scholar
Lemze, D., et al. 2012. ApJ, 752, 141 https://doi.org/10.1088/0004-637X/752/2/141. arXiv: 1106.6048 [astro-ph.CO].CrossRefGoogle Scholar
Łokas, E. L., & Mamon, G. A. 2001, MNRAS, 321, 155 https://doi.org/10.1046/j.1365-8711.2001.04007.x. arXiv: astro-ph/0002395 [astro-ph].CrossRefGoogle Scholar
Lu, Y., Mo, H. J., Katz, N., & Weinberg, M. D. 2006, MNRAS, 368, 1931 https://doi.org/10.1111/j.1365-2966.2006.10270.x. arXiv: astro-ph/0508624 [astro-ph].CrossRefGoogle Scholar
Ludlow, A. D., Navarro, J. F., Angulo, R. E., Boylan-Kolchin, M., Springel, V., Frenk, C., & White, S. D. M. 2014, MNRAS, 441 378 https://doi.org/10.1093/mnras/stu483. arXiv: 1312.0945 [astro-ph.CO].CrossRefGoogle Scholar
Ludlow, A. D., et al. 2013, MNRAS, 432, 1103 https://doi.org/10.1093/mnras/stt526. arXiv: 1302.0288 [astro-ph.CO].CrossRefGoogle Scholar
Merritt, D. 1985, AJ, 90 1027 https://doi.org/10.1086/113810.CrossRefGoogle Scholar
Moore, B. 1994, Natur, 370, 629 https://doi.org/10.1038/370629a0.CrossRefGoogle Scholar
Murray, S. G., Power, C., & Robotham, A. S. G. 2013a, A&C, 3, 23 https://doi.org/10.1016/j.ascom.2013.11.001. arXiv: 1306.6721 [astro-ph.CO].CrossRefGoogle Scholar
Murray, S. G., Power, C., & Robotham, A. S. G. 2013b, MNRAS, 434 https://doi.org/10.1093/mnrasl/slt079 L61. arXiv: 1306.5140 [astro-ph.CO].CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 720 https://doi.org/10.1093/mnras/275.3.720. arXiv: astro-ph/9408069 [astro-ph].CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563 https://doi.org/10.1086/177173. arXiv: astro-ph/9508025 [astro-ph].CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 https://doi.org/10.1086/304888. arXiv: astro-ph/9611107 [astro-ph].CrossRefGoogle Scholar
Navarro, J. F., et al. 2010, MNRAS, 402, 21 https://doi.org/10.1111/j.1365-2966.2009.15878.x. arXiv: 0810.1522 [astro-ph].CrossRefGoogle Scholar
Ogiya, G., & Hahn, O. 2018, MNRAS, 473, 4339 https://doi.org/10.1093/mnras/stx2639. arXiv: 1707.07693 [astro-ph.CO].CrossRefGoogle Scholar
Oman, K. A., et al. 2015, MNRAS, 452, 3650 https://doi.org/10.1093/mnras/stv1504. arXiv: 1504.01437 [astro-ph.GA].CrossRefGoogle Scholar
Collaboration, Planck, et al. 2016, A&A, 594 A13. https://doi.org/10.1051/0004-6361/201525830 arXiv: 1502.01589 [astro-ph.CO].CrossRefGoogle Scholar
Power, C., Knebe, A., & Knollmann, S. R. 2012, MNRAS, 419, 1576 https://doi.org/10.1111/j.1365-2966.2011.19820.x. arXiv: 1109.2671 [astro-ph.CO].CrossRefGoogle Scholar
Prada, F., et al. 2003, ApJ, 598, 260 https://doi.org/10.1086/378669. arXiv: astro-ph/0301360 [astro-ph].CrossRefGoogle Scholar
Press, W. H., & Schechter, P. 1974, ApJ, 187 425 https://doi.org/10.1086/152650.CrossRefGoogle Scholar
Robotham, A. S. G., et al. 2011. MNRAS, 416, 2640 https://doi.org/10.1111/j.1365-2966.2011.19217.x. arXiv: 1106.1994 [astro-ph.CO].CrossRefGoogle Scholar
Sheth, R. K., & Tormen, G. 2002, MNRAS, 329, 61 https://doi.org/10.1046/j.1365-8711.2002.04950.x. arXiv: astro-ph/0105113 [astro-ph].CrossRefGoogle Scholar
Smith, R. E., & Markovic,. K. 2011, PhRvD, 84 063507 https://doi.org/10.1103/PhysRevD.84.063507. arXiv: 1103.2134 [astro-ph.CO].CrossRefGoogle Scholar
Thomas, P. A., et al. 1998, MNRAS, 296 1061 https://doi.org/10.1046/j.1365-8711.1998.01491.x.CrossRefGoogle Scholar
Tollet, E., et al. 2016, MNRAS, 456, 3542 https://doi.org/10.1093/mnras/stv2856. arXiv: 1507.03590 [astro-ph.GA].CrossRefGoogle Scholar
Vikhlinin, A., et al. 2009, ApJ, 692, 1033 https://doi.org/10.1088/0004-637X/692/2/1033. arXiv: 0805.2207 [astro-ph].CrossRefGoogle Scholar
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., & Van Speybroeck, L. 2006, ApJ, 640 691 https://doi.org/10.1086/500288. arXiv: astro-ph/0507092 [astro-ph].CrossRefGoogle Scholar
White, M. 2001, A&A, 367, 27 https://doi.org/10.1051/0004-6361:20000357. arXiv: astro-ph/0011495 [astro-ph].CrossRefGoogle Scholar
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379 52 https://doi.org/10.1086/170483.CrossRefGoogle Scholar
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183 341 https://doi.org/10.1093/mnras/183.3.341.CrossRefGoogle Scholar
Zhao, D. H., Jing, Y. P., Mo, H. J., & Börner, G. 2003, ApJ, 597 L9 https://doi.org/10.1086/379734. arXiv: astro-ph/0309375 [astro-ph].CrossRefGoogle Scholar