Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T01:58:04.028Z Has data issue: false hasContentIssue false

The non-thermal emission from the colliding-wind binary Apep

Published online by Cambridge University Press:  31 January 2022

S. del Palacio*
Affiliation:
Instituto Argentino de Radioastronomía (CONICET;CICPBA;UNLP), C.C. No 5, 1894, Villa Elisa, Argentina
P. Benaglia
Affiliation:
Instituto Argentino de Radioastronomía (CONICET;CICPBA;UNLP), C.C. No 5, 1894, Villa Elisa, Argentina
M. De Becker
Affiliation:
Space sciences, Technologies and Astrophysics Research (STAR) Institute, University of Liège, Liège, Belgium
V. Bosch-Ramon
Affiliation:
Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona, Spain
G. E. Romero
Affiliation:
Instituto Argentino de Radioastronomía (CONICET;CICPBA;UNLP), C.C. No 5, 1894, Villa Elisa, Argentina
*
Author for Correspondence: S. del Palacio, e-mail: sdelpalacio@iar.unlp.edu.ar

Abstract

Therecently discovered massive binary system Apep is the most powerful synchrotron emitter among the known Galactic colliding-wind binaries. This makes this particular system of great interest to investigate stellar winds and the non-thermal processes associated with their shocks. This source was detected at various radio bands, and in addition the wind-collision region was resolved by means of very-long baseline interferometric observations. We use a non-thermal emission model for colliding-wind binaries to derive physical properties of this system. The observed morphology in the resolved maps allows us to estimate the system projection angle on the sky to be $\psi \approx 85^\circ$ . The observed radio flux densities also allow us to characterise both the intrinsic synchrotron spectrum of the source and its modifications due to free–free absorption in the stellar winds at low frequencies; from this, we derive mass–loss rates of the stars of $\dot{M}_\mathrm{WN} \approx 4\times10^{-5}\;\mathrm{M}_\odot\,\mathrm{yr}^{-1}$ and $\dot{M}_\mathrm{WC} \approx 2.9\times10^{-5}\;\mathrm{M}_\odot\,\mathrm{yr}^{-1}$ . Finally, the broadband spectral energy distribution is calculated for different combinations of the remaining free parameters, namely the intensity of the magnetic field and the injected power in non-thermal particles. We show that the degeneracy of these two parameters can be solved with observations in the high-energy domain, most likely in the hard X-rays but also possibly in $\gamma$ -rays under favourable conditions.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, K. A. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, ed.G. H. Jacoby, & J. Barnes, 17 Google Scholar
Benaglia, P., & Romero, G. E. 2003, A&A, 399, 1121CrossRefGoogle Scholar
Bloot, S., Callingham, J. R., & Marcote, B. 2021, MNRAS.Google Scholar
Callingham, J. R., Crowther, P. A., Williams, P. M., Tuthill, P. G., Han, Y.,Pope, B. J. S., & Marcote, B. 2020, MNRAS, 495, 3323CrossRefGoogle Scholar
Callingham, J. R., Tuthill, P. G., Pope, B. J. S., Williams, P. M., Crowther, P. A., Edwards, M., Norris, B., & Kedziora-Chudczer, L. 2019, NatAs, 3, 82CrossRefGoogle Scholar
Cappa, C., Goss, W. M., & van der Hucht, K. A. 2004, AJ, 127, 2885CrossRefGoogle Scholar
Crowther, P. A. 2007, ARA&A, 45, 177CrossRefGoogle Scholar
de Angelis, A., et al. 2018, JHEA, 19, 1CrossRefGoogle Scholar
De Becker, M., Benaglia, P., Romero, G. E., & Peri, C. S. 2017, A&A, 600, A47CrossRefGoogle Scholar
De Becker, M., & Raucq, F. 2013, A&A, 558, A28CrossRefGoogle Scholar
del Palacio, S., Bosch-Ramon, V., Romero, G. E., & Benaglia, P. 2016, A&A, 591, A139CrossRefGoogle Scholar
del Palacio, S., et al. 2020, MNRAS, 494, 6043CrossRefGoogle Scholar
Dougherty, S. M., Pittard, J. M., Kasian, L., Coker, R. F., Williams, P. M., & Lloyd, H. M. 2003, A&A, 409, 217CrossRefGoogle Scholar
Drew, J. E. 1990, in Astronomical Society of the Pacific Conference Series,Vol. 7, Properties of Hot Luminous Stars, ed. C. D. Garmany, 230Google Scholar
Drury, L. O. 1983, RPPh, 46, 973CrossRefGoogle Scholar
Eichler, D., & Usov, V. 1993, ApJ, 402, 271CrossRefGoogle Scholar
Funk, S., Hinton, J. A., & Consortium, CTA 2013, APh, 43, 348CrossRefGoogle Scholar
Hamaguchi, K., et al. 2018, NatAs, 2, 731Google Scholar
Hamann, W. R., et al. 2019, A&A, 625, A57CrossRefGoogle Scholar
Han, Y., et al. 2020, MNRAS, 498, 5604Google Scholar
Intema, H. T., Jagannathan, P., Mooley, K. P., & Frail, D. A. 2017, A&A, 598, A78CrossRefGoogle Scholar
Koglin, J. E., et al. 2005, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5900, Optics for EUV, X-Ray, and Gamma-Ray Astronomy II, ed. O. Citterio, & S. L. O’Dell, 266, doi: 10.1117/12.618601CrossRefGoogle Scholar
Leitherer, C., Chapman, J. M., & Koribalski, B. 1995, ApJ, 450, 289CrossRefGoogle Scholar
Marcote, B., Callingham, J. R., De Becker, M., Edwards, P. G., Han, Y.,Schulz, R., Stevens, J., & Tuthill, P. G. 2021, MNRAS, 501, 2478CrossRefGoogle Scholar
Merten, L., Becker Tjus, J., Eichmann, B., & Dettmar, R.-J. 2017, APh, 90, 75CrossRefGoogle Scholar
Molina, E., & Bosch-Ramon, V. 2018, A&A, 618, A146CrossRefGoogle Scholar
Pittard, J. M. 2009, MNRAS, 396, 1743CrossRefGoogle Scholar
Pittard, J. M., & Dougherty, S. M. 2006, MNRAS, 372, 801CrossRefGoogle Scholar
Pittard, J. M., Romero, G. E., & Vila, G. S. 2021, MNRAS, 504, 4204CrossRefGoogle Scholar
Puls, J., Vink, J. S., & Najarro, F. 2008, A&ARv, 16, 209CrossRefGoogle Scholar
Reitberger, K., Kissmann, R., Reimer, A., & Reimer, O. 2014, ApJ, 789, 87CrossRefGoogle Scholar
Rosslowe, C. K., & Crowther, P. A. 2015, MNRAS, 447, 2322CrossRefGoogle Scholar
Runacres, M. C., & Owocki, S. P. 2002, A&A, 381, 1015CrossRefGoogle Scholar
Sana, H., et al. 2012, Sci, 337, 444CrossRefGoogle Scholar
Sander, A. A. C., Hamann, W. R., Todt, H., Hainich, R., Shenar, T., Ramachandran, V., & Oskinova, L. M. 2019, A&A, 621, A92CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433 (arXiv:astro-ph/0612759)Google Scholar
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914CrossRefGoogle Scholar
Wright, A. E., & Barlow, M. J. 1975, MNRAS, 170, 41CrossRefGoogle Scholar