Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T00:21:31.698Z Has data issue: false hasContentIssue false

Modelling Galaxies with a 3D Multi-Phase ISM

Published online by Cambridge University Press:  05 March 2013

Stefan Harfst*
Affiliation:
University of Kiel, Institute of Theoretical Physics and Astrophysics, 24098 Kiel, Germany Centre for Astrophysics & Supercomputing, Swinburne University, VIC 3122, Australia
Christian Theis
Affiliation:
University of Kiel, Institute of Theoretical Physics and Astrophysics, 24098 Kiel, Germany University of Vienna, Institute of Astronomy, 1180 Vienna, Austria
Gerhard Hensler
Affiliation:
University of Kiel, Institute of Theoretical Physics and Astrophysics, 24098 Kiel, Germany University of Vienna, Institute of Astronomy, 1180 Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a modified TREE-SPH code to model galaxies in three dimensions. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH, whereas a cloudy medium is represented by a sticky particle scheme. Interaction processes (such as star formation and feedback), cooling, and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ∼1 M yr–1. Condensation and evaporation rates are in balance at 0.1–1 M yr–1.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Berczik, P. 1999, A&A, 348, 371 Google Scholar
Berczik, P., Hensler, G., Theis, Ch., & Spurzem, R. 2003, Ap&SS, 284, 865 Google Scholar
Böhringer, H., & Hensler, G. 1989, A&A, 215, 147 Google Scholar
Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781 Google Scholar
Cowie, L. L., McKee, C. F., & Ostriker, J. P. 1981, ApJ, 247, 908 CrossRefGoogle Scholar
Dehnen, W. 2002, JCP, 179, 27 Google Scholar
Elmegreen, B. G., & Efremov, Y. N. 1997, ApJ, 480, 235 Google Scholar
Elmegreen, B. G. 2000, ApJ, 530, 277 CrossRefGoogle Scholar
Friedli, D., & Benz, W. 1995, A&A, 301, 649 Google Scholar
Gingold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375 Google Scholar
Hultman, J., & Pharasyn, A. 1999, A&A, 347, 769 Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545 CrossRefGoogle Scholar
Kuijken, K., & Dubinski, J. 1995, MNRAS, 277, 1341 CrossRefGoogle Scholar
Lucy, L. B. 1977, AJ, 82, 1013 Google Scholar
Monaghan, J. J. 1992, ARA&A, 30, 543 Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 CrossRefGoogle Scholar
Raiteri, C. M., Villata, M., & Navarro, J. F. 1996, A&A, 315, 105 Google Scholar
Ritchie, B. W., & Thomas, P. A. 2001, MNRAS, 323, 743 Google Scholar
Rivolo, A. R., & Solomon, P. M. 1988, in Molecular Clouds in the Milky Way and External Galaxies, eds. R. L. Dickman, R. L. Snell, & J. S. Young, p. 42 Google Scholar
Semelin, B., & Combes, F. 2002, A&A, 388, 826 Google Scholar
Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289 Google Scholar
Steinmetz, M., & Müller, E. 1994, A&A, 281, 97 Google Scholar
Steinmetz, M., & Müller, E. 1995, MNRAS, 276, 549 Google Scholar
Theis, Ch., & Hensler, G. 1993, A&A, 280, 85 Google Scholar
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52 Google Scholar