Skip to main content Accessibility help

A Cyclotron Theory for the Beaming Pattern of Jupiter’s Decametric Radio Emission

  • R. G. Hewitt (a1), D. B. Melrose (a1) and K. G. Rönnmark (a1)


Ground-based observations of Jupiter’s decametric radio emission (DAM) have been reviewed by Ellis (1965), Warwick (1967, 1970) and Carr and Gulkis (1969). A startling feature of DAM is the modulating effect of Io, and interpretation of the Io effect has dominated theoretical discussions of DAM until quite recently, specifically until the fly-by s of Voyagers 1 and 2. The Voyager data showed that the DAM appears as nested arcs in the frequency-Jovian longitude plane (Warwick et al. 1979, Boischot et al. 1981). The interpretation of this arc structure has been of primary theoretical interest over the past two years. The most widely adopted explanation is that the emission from each point is confined to the surface of a hollow cone (Goldstein and Thieman 1981). This idea is not new: emission on the surface of a cone was discussed by Ellis and McCulloch (1963); Dulk (1967) derived detailed parameters for the cone (half angle 79° width 1°) from the occurrence pattern of DAM; and Goldreich and Lynden-Bell (1969) presented a theoretical interpretation of it. More recently Goldstein et al. (1979) used observational data on the Jovian magnetic field in deriving properties of the required emission cone. It seems that one requires the properties of the emission cone to vary with position in the Jovian magnetosphere to account for the nested arc pattern (Goldstein and Thieman 1981; Gurnett and Goertz 1981).



Hide All
Boischot, A., Lecacheux, A., Kaiser, M. L., Desch, M. D., Alexander, J. K., and Warwick, J. W., in press, (1981).
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. L., Shemansky, D. E., Holberg, J. B., Ajello, J. M., Atreva, S. K., Donahue, T. M., Moos, H. W., Bertaux, J. L., Blamont, J. E., Strobel, D. F., McConnell, J. C., Dalgarno, A., Goody, R., and McElroy, M. B., Science, 204, 979 (1979).
Carr, T. D., and Gulkis, S., Annu. Rev. Astron. Astrophys., 7, 577 (1969).
Dory, R. A., Guest, G. E., and Harris, E. G., Phys. Rev. Lett., 14, 131 (1965).
Dulk, G. A., Icarus, 7, 173 (1967).
Ellis, G. R. A., Radis Science 69 D, 1513 (1965).
Ellis, G. R. A., and McCulIoch, P. M., Aust. J. Phys., 16, 380 (1963).
Fung, P. C. W., Planet. Space Sci., 14, 469 (1966).
Goertz, C. K., J. Geophys. Res., (1980).
Goldreich, P., and Lynden-Bell, D., Astrophys. J., 156, 59 (1969).
Goldstein, M. L., and Eviatar, A., Astrophys. J., 175, 275 (1972).
Goldstein, M. L., and Eviatar, A., Astrophys. J., 230, 261 (1979).
Goldstein, M. L., Eviatar, A., and Thieman, J. R., Astrophys. J., 229, 1186 (1979).
Goldstein, M. L., and Thieman, J. R., in press, (1981).
Gurnett, D. A., and Goertz, C. K., J. Geophys. Res., 86A, 717 (1981).
Lee, L. C., Kan, J. R., and Wu, C. S., Planet. Space Sci., 28, 703 (1980).
Melrose, D. B., Astrophys. J., 207, 651 (1976).
Melrose, D. B., Plasma Astrophysics, Vol. II, Gordon and Breach (New York 1980).
Neubauer, F. M., J. Geophys. Res., 85, 1171 (1980).
Smith, R. A., in Gehrels, T. (ed.), Jupiter, Univ. of Arizona Press (Tucson), p. 1146 (1976). Warwick, J. W., Space Sci. Rev., 6, 841 (1967).
Warwick, J. W., Particles and Fields near Jupiter, NASA CR-1685 (1970).
Warwick, J. W., Pearce, J. B., Riddle, A. C., Alexander, J. K., Desch, M. D., Kaiser, M. L., Thieman, J. R., Carr, T. D., Gulkis, S., Boischot, A., Harvey, C. C., and Petersen, B. M., Science, 204, 995 (1979).
Wu, C. S., and Lee, L. C., Astrophys. J., 230, 621 (1979).

A Cyclotron Theory for the Beaming Pattern of Jupiter’s Decametric Radio Emission

  • R. G. Hewitt (a1), D. B. Melrose (a1) and K. G. Rönnmark (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed