Skip to main content Accessibility help
×
Home

An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models

  • Eric Thrane (a1) and Colm Talbot (a2)

Abstract

This is an introduction to Bayesian inference with a focus on hierarchical models and hyper-parameters. We write primarily for an audience of Bayesian novices, but we hope to provide useful insights for seasoned veterans as well. Examples are drawn from gravitational-wave astronomy, though we endeavour for the presentation to be understandable to a broader audience. We begin with a review of the fundamentals: likelihoods, priors, and posteriors. Next, we discuss Bayesian evidence, Bayes factors, odds ratios, and model selection. From there, we describe how posteriors are estimated using samplers such as Markov Chain Monte Carlo algorithms and nested sampling. Finally, we generalise the formalism to discuss hyper-parameters and hierarchical models. We include extensive appendices discussing the creation of credible intervals, Gaussian noise, explicit marginalisation, posterior predictive distributions, and selection effects.

Copyright

Corresponding author

Author for correspondence: Eric Thrane, Email: eric.thrane@monash.edu

References

Hide All
Abbott, B. P., et al. 2016a, PhRvX, 6, 041015
Abbott, B. P., et al. 2016b, PhRvL, 116, 061102
Abbott, B. P., et al. 2017a, PhRvX, 9, 011001
Abbott, B. P., et al. 2017b, PhRvL, 118, 221102
Abbott, B. P., et al. 2017c, PhRvL, 119, 161101
Abbott, B. P., et al. 2017d, Nature, 551, 85
Abbott, B. P., et al. 2017e, ApJ, 839, 12
Abbott, B. P., et al. 2018a, Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. https://arxiv.org/abs/1811.12940
Abbott, B. P., et al. 2018b, PhRvL, 120, 201102
Adams, M., Cornish, N., & Littenberg, T. 2012, PhRvD, 86, 124032
Anderson, W. G., Brady, P. R., Creighton, J. D. E., & Flanagan, É. É. 2001, PhRvD, 63, 042003
Andreon, S. & Weaver, B. 2015, Bayesian Methods for the Physical Sciences (1st edn.; Switzerland: Springer)
Babak, S., et al. 2008, Class. Quant. Grav., 25, 184026
Babak, S., et al. 2010, Class. Quant. Grav., 27, 084009
Blackman, J., Field, S. E., Scheel, M. A., Galley, C. R., Hemberger, D. A., Schmidt, P., & Smith, R. 2017, PhRvD, 95, 104023
Callister, T., et al. 2017, PhRvX, 7, 041058
Canizares, P., Field, S. E., Gair, J. R., & Tiglio, M. 2013, PhRvD, 87, 124005
Chattopadhyay, A. K., & Chattopadhyay, T. 2014, Statistical Methods for Astronomical Data Analysis (1st edn.; New York: Springer)
Cornish, N. J., & Littenberg, T. B. 2015, Class. Quant. Grav., 32, 135012
Cutler, C., & Flanagan, É. E. 1994, PhRvD, 49, 2658
Damour, T., Iyer, B. R., & Sathyaprakash, B. S. 2005, PhRvD, 63, 044023
Dupuis, R. J., & Woan, G. 2005, PhRvD, 72, 102002
Farr, W. M. 2014, Marginalisation of the Time Parameter in Gravitational Wave Parameter Estimation. https://dcc.ligo.org/T1400460-v2/public
Farr, W. M., Stevenson, S., Miller, M. C., Mandel, I., Farr, B., & Vecchio, A. 2017, Nature, 548, 426
Fishbach, M., & Holz, D. E. 2017, ApJL, 851, L25
Fishbach, M., Holz, D. E., & Farr, W. M. 2018, ApJL, 863, L41
Foreman-Mackey, D. 2016, J. Open Source Softw., 24
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. 2013, Bayesian Data Analysis (3rd ed.; Boca Raton, FL: Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis), https://books.google.com.au/books?id=ZXL6AQAAQBAJ
Gerosa, D. & Berti, E. 2017, PhRvD, 95, 124046
Gregory, P. 2005, Bayesian Logical Data Analysis for the Physical Sciences (1st edn.; Cambridge, England: Cambridge University Press)
Hannam, M., Schmidt, P., Bohé, A., Haegel, L., Husa, S., Ohme, F., Pratten, G., & Pürrer, M. 2014, PhRvL, 113, 151101
Hastings, W. K. 1970, Biometrika, 57, 97
Hilbe, J. M., ed. 2013, Astrostatistical Challenges for the New Astronomy (1st edn.; New York: Springer)
Hogg, D. W., & Foreman-Mackey, D. 2018, ApJS, 236, 11
Jade Powell, S. E. G., Logue, J., Heng, I. S. 2016, PhRvD, 94, 123012
Jeffreys, H. 1961, Theory of Probability (3rd edn.; Oxford, England: Oxford)
Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Forteza, X. J., & Bohé, A. 2016, PhRvD, 93, 044007
Lange, J., O’shaughnessy, R., & Rizzo, M. 2018
Lentati, L., Alexander, P., Hobson, M. P., Feroz, F., van Haasteren, R., Lee, K., &Shannon, R. M. 2014, MNRAS, 437, 3004
LIGO/Virgo, Properties of the Binary Neutron Star Merger GW170817. https://dcc.ligo.org/LIGO-P1800061/public
Littenberg, T. B., & Cornish, N. J. 2015, PhRvD, 91, 084034
Logue, J., Ott, C. D., Heng, I. S., Kalmus, P., & Scargill, J. H. C. 2012, PhRvD, 86, 044023
Loredo, T. J. 2012, Bayesian astrostatistics: A backward look to the future, https://arxiv.org/abs/1208.3036
Lower, M. E., Thrane, E., Lasky, P. D., & Smith, R. 2018, PhRvD, 98, 083028
Mandel, I. 2010, PhRvD, 81, 084029
Mandel, I., Farr, W. M., & Gair, J. R. 2018, Extracting distribution parameters from multiple uncertain observations with selection biases, https://arxiv.org/abs/1809.02063
Mandel, I., & O’shaughnessy, R. 2010, Class. Quant. Grav., 27, 114007
Mandic, V., Thrane, E., Giampanis, S., & Regimbau, T. 2012, PhRvL, 109, 171102
Manuel, L., Eyer, S., O’Mullane, W., Ridder, J. D., eds. 2012 (1st edn.; New York: Springer)
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E., 1953, J. Chem. Phys., 21, 1087
Ng, K. K. Y., Vitale, S., Zimmerman, A., Chatziioannou, K., Gerosa, D., & Haster, C.-J. 2018, PhRvD, 98, 083007
Pankow, C., Brady, P., Ochsner, E., & O’shaughnessy, R. 2015, PhRvD, 92, 023002
Pürrer, M. 2014, Class. Quant. Grav., 31, 195010
Röver, C., Meyer, R., & Christensen, N. 2011, Class. Quant. Grav., 28, 015010
Sharma, S. 2017, ARA&A, 55, 213
Sidery, T., et al. 2014, PhRvD, 89, 084060
Singer, L. P., & Price, L. R. 2016, PhRvD, 93, 024013
Singer, L. P., et al. 2016, ApJL, 829, L15
Sivia, D. S., & Skilling, J. 2006 (2nd edn.; Oxford, England: Oxford)
Skilling, J. 2004, Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conf. Proc., ed. Fischer, Rainer, Preuss, Roland, & von Toussaint, Udo (Melville, NY: American Institute of Physics) 735, 395
Smith, R., Field, S. E., Blackburn, K., & Haster, C.-J., PÃijrrer, M., Raymond, V., & Schmidt, P. 2016, PhRvD, 94, 044031
Smith, R., & Thrane, E. 2018, PhRvX, 8, 021019
Stevenson, S., Berry, C. P. L., & Mandel, I. 2017, MNRAS, 471, 2801
Talbot, C., & Thrane, E. 2017, PhRvD, 96, 023012
Talbot, C., & Thrane, E. 2018, ApJ, 856, 173
Umstätter, R., Meyer, R., Dupuis, R. J., Veitch, J., Woan, G., Christensen, N. 2004, Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conf. Proc., ed. Fischer, Rainer, Preuss, Roland, & von Toussaint, Udo (Melville, NY: American Institute of Physics) 735, 336
van der Sluys, M., Raymond, V., Mandel, I., Roever, C., Christensen, N., Kalogera, V., Meyer, R., & Vecchio, A. 2008a, Class. Quant. Grav., 25, 184011
van der Sluys, M. V., et al. 2008b, ApJL, 688, L61
Veitch, J., & Del Pozzo, W. 2013, Analytic Marginalisation of Phase Parameter, https://dcc.ligo.org/LIGO-T1300326/public
Veitch, J., & Vecchio, A. 2008, PhRvD, 78, 022001
Veitch, J., et al. 2015, PhRvD, 91, 042003
Vigeland, S. J., & Vallisneri, M. 2014, MNRAS, 440, 1446
Vitale, S., Lynch, R., Sturani, R., & Graff, P. 2017, Class. Quant. Grav., 34, 03LT01
Wysocki, D., Lange, J., & O’shaughnessy, R. 2018

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed