Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T19:07:28.408Z Has data issue: false hasContentIssue false

An Improved Metallicity Calibration with UBV Photometry

Published online by Cambridge University Press:  02 January 2013

S. Karaali*
Affiliation:
Beykent University, Faculty of Science and Letters, Department of Mathematics and Computer, Beykent Ayazağa Campus, 34398, Istanbul, Turkey
S. Bilir
Affiliation:
Istanbul University, Faculty of Sciences, Department of Astronomy and Space Sciences, 34119, Istanbul, Turkey
S. Ak
Affiliation:
Istanbul University, Faculty of Sciences, Department of Astronomy and Space Sciences, 34119, Istanbul, Turkey
E. Yaz
Affiliation:
Istanbul University, Faculty of Sciences, Department of Astronomy and Space Sciences, 34119, Istanbul, Turkey
B. Coşkunoğlu
Affiliation:
Istanbul University, Faculty of Sciences, Department of Astronomy and Space Sciences, 34119, Istanbul, Turkey
*
CCorresponding author. Email: karsa@istanbul.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We used the data of 701 stars covering the colour index interval 0.32 < B − V ≤ 1.16, with metallicities −1.76 ≤ [Fe/H]≤+0.40 dex. The data were taken from the PASTEL catalogue and estimated metallicity-dependent guillotine factors, which provide a more accurate metallicity calibration. We reduced the metallicities of 11 different authors to the metallicities of Valenti & Fischer (2005), and thus obtained a homogeneous set of data which increased the accuracy of the calibration, i.e. [Fe/H]= −14.316δ20.6 − 3.557δ0.6+0.105. Comparison of the metallicity residuals for two sets of data based on the metallicity-dependent guillotine factors with the ones obtained via metal-free guillotine factors shows that metallicities estimated by means of the new guillotine factors are more accurate than the other ones. This advantage can be used in the metallicity gradient investigation of the Galactic components, i.e. thin disc, thick disc, and halo.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Ak, S., Bilir, S., Karaali, S. & Buser, R., 2007a, AN, 328, 169Google Scholar
Ak, S., Bilir, S., Karaali, S., Buser, R. & Cabrera-Lavers, A., 2007b, NewA, 12, 605CrossRefGoogle Scholar
Bahcall, J. N. & Soneira, R. M., 1980, ApJS, 44, 73CrossRefGoogle Scholar
Buser, R. & Kurucz, R. L., 1978, A&A, 70, 555Google Scholar
Buser, R. & Kurucz, R. L., 1985, Calibration of fundamental stellar quantities; Proceedings of the Symposium, Como, Italy, May 24–29, 1984 (Dordrecht: D. Reidel Publishing Co.), 513CrossRefGoogle Scholar
Buser, R. & Fenkart, R. P., 1990, A&A, 239, 243Google Scholar
Buser, R. & Kurucz, R. L., 1992, A&A, 264, 557Google Scholar
Cameron, L. M., 1985, A&A, 152, 250Google Scholar
Carney, B. W., 1979, ApJ, 233, 211CrossRefGoogle Scholar
Cayrel de Strobel, G., Soubiran, C. & Ralite, N., 2001, A&A, 373, 159Google Scholar
Fuhrmann, K., 2008, MNRAS, 384, 173CrossRefGoogle Scholar
Hauck, B., Nitschelm, C., Mermilliod, M. & Mermilliod, J.-C., 1990, A&AS, 85, 989Google Scholar
Karaali, S., Bilir, S., Karataş, Y. & Ak, S., 2003, PASA, 20, 165CrossRefGoogle Scholar
Karataş, Y. & Schuster, W., 2006, MNRAS, 371, 1793CrossRefGoogle Scholar
Lejeune, Th., Cuisinier, F. & Buser, R., 1997, A&AS, 125, 229Google Scholar
Luck, R. E. & Heiter, U., 2006, AJ, 131, 3069CrossRefGoogle Scholar
Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S., 2006, A&A, 453, 635Google Scholar
Mishenina, T. V., Soubiran, C., Kovtyukh, V. V. & Korotin, S. A., 2004, A&A, 418, 551Google Scholar
Nissen, P. E., Primas, F., Asplund, M. & Lambert, D. L., 2002, A&A, 390, 235Google Scholar
Ramirez, I. & Melendez, J., 2005, ApJ, 626, 446CrossRefGoogle Scholar
Roman, N. G., 1955, ApJS, 2, 195CrossRefGoogle Scholar
Ryan, S. G. & Smith, I. M., 2003, MNRAS, 341, 199CrossRefGoogle Scholar
Sandage, A. & Eggen, O. J., 1959, MNRAS, 119, 278CrossRefGoogle Scholar
Sandage, A., 1969, ApJ, 158, 1115CrossRefGoogle Scholar
Santos, N. C., Israelian, G. & Mayor, M., 2004, A&A, 415, 1153Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M., 1998, ApJ, 500, 525CrossRefGoogle Scholar
Schwarzschild, M., Searle, L. & Howard, R., 1955, ApJ, 122, 353CrossRefGoogle Scholar
Soubiran, C., Le Campion, J.-F., Cayrel de Strobel, G. & Caillo, A., 2010, A&A, 515, A111Google Scholar
Sousa, S. G., Santos, N. C., Mayor, M., Udry, S., Casagrande, L., Israelian, G., Pepe, F., Queloz, D. & Monteiro, M. J. P. F. G., 2008, A&A, 487, 373Google Scholar
Spite, M., Francois, P., Nissen, P. E. & Spite, F., 1996, A&A, 307, 172Google Scholar
Strömgren, B., 1966, ARA&A, 4, 433Google Scholar
Tomkin, J. & Lambert, D. L., 1999, ApJ, 523, 234CrossRefGoogle Scholar
Trefzger, Ch. F., Pel, J. W. & Gabi, S., 1995, A&A, 304, 381Google Scholar
Valenti, J. A. & Fischer, D. A., 2005, ApJS, 159, 141CrossRefGoogle Scholar
van Leeuwen, F., 2007, ASSL, 350Google Scholar
Vandenberg, D. A. & Bell, R. A., 1985, ApJS, 58, 561CrossRefGoogle Scholar
Wallerstein, G. & Carlson, M., 1960, ApJ, 132, 276CrossRefGoogle Scholar
Wallerstein, G., 1962, ApJS, 6, 407CrossRefGoogle Scholar
Walraven, Th. & Walraven, J. H., 1960, Bull. Astron. Inst. Netherlands, 15, 67Google Scholar
Wildey, R. L., Burbidge, E. M., Sandage, A. R. & Burbidge, G. R., 1962, ApJ, 135, 94CrossRefGoogle Scholar
Yaz, E. & Karaali, S., 2010, NewA, 15, 234CrossRefGoogle Scholar